
Slide 1

OOoCon 2005

Speeding OpenOffice Startup
Profiling, Tools & Approaches

Dhananjay Keskar

Michael Leibowitz

Slide 2

Agenda

Introductions
Intel & OpenOffice
Team & Efforts

Profiling
Tools - APPR
Approaches for speed-up
Q & A

Slide 3

Intel and OpenOffice
Intel as the platform of choice for PC software

Enable customer choices on Intel® Platforms

Channel Software Operation
Help Intel® Channel address new market needs

Linux* on Intel platforms
Support customer demand for Linux & OSS
Help the channel build & sell PCs running Linux

 Intel® Quick Start Kit for Linux

Invest & Participate in OSS Community

Robust, viable Desktop Linux
Office automation suite is key part of PC usage
OpenOffice is an excellent choice on Linux

Contribute to improve and optimize OpenOffice

Slide 4

About Us

Intel OpenOffice Team
dkeskar, mikeleib, ndev, yli34, maxy, bspencer...
Dhananjay Keskar, Michael Leibowitz, Naren Devaiah,
Yin Li, Max Alt, Bob Spencer, Stan Wang, Max Yu,
Gordon Jin, Weichuan Lin

Timeline:
Jan/Feb - Gap Analysis – Features & Interoperability
Mar/Apr - Build; read source, dev manuals

 Focused Areas: Start-up, Rendering, Threading

May/June – Project approval, initial profiling
July – some quick patches
Aug/Sep – tools, startup investigations & approaches

 Expanded Team – EM64T

Slide 5

Profiling

Slide 6

Profiling
Startup & load representative document set
Initial Profiling Goals

Get some first hand data, particularly with Intel tools
Get better understanding of the code & modules

Expectations:
Code hotspots, functions that could be optimized
Call flow paths that could be tuned

Experiences:
Code complexity – Many tools crash or confused
Call graphs did not help as expected.

What helped:
Using multiple tools, knowing their strengths
Using the source, knowing UNO & interaction
Clues & context from helpful OpenOffice developers

Slide 7

Profiling

svx680li

configmgr2.un
o

svl680li

pthread

vclplug_gen6

sot680li

vcl680li

uno_sal

ld-2.3.3

sw680li

0 0.1 0.2 0.3 0.4 0.5

Import - top modules (time)

doc
xls
ppt

Weighted Score over Workload

Oft-seen Hotspot Functions for workload
SwFltControlStack::SetAttr
operator<(SprmInfo const &, SprmInfo const &)
configmgr::data::GroupNodeAccess::check
vcl::PNGReaderImpl::ImplGetFilter
vcl::PNGReaderImpl::ImplSetPixel
CreateFont(SvxFont &, SfxItemSet ..)

data::GroupNodeAccess::check

Slide 8

Profiling Results

Rework hot spot code
ww8scan – quick patch, submitted.
Locked string operations – investigation

Load/Link
Second thoughts – Symbol visibility, library count..
Prior & ongoing work, e.g. Michael Meeks

Better, more automated tooling for profiling
APPR

Further investigate approaches for speed-up
Configuration file operations & initialization
Disk access patterns
Smarter document load

Slide 9

Tooling

Slide 10

APPR

Automated Profiling & Performance Regression
Genesis:

No one tool sufficient
No one document is representative
Manual profiling lengthy, tedious and error-prone

Goals:
Gather & correlate measurable data of interest
Measure & track metrics across builds
... and across workload variation
Add metrics appropriate to work focus

 e.g. Startup, File Load, Responsiveness...

Implementation begun early August
yli34 (framework), mikeleib (correlation)
sh, StarBASIC, C, perl

Slide 11

APPR Features

Benchmark a build
Start-up time, phase timings, other correlated data
Empty shell/doc, load document or run workload
Compare with previous build

Correlated Data
RTL log, strace, link data, system monitor
Vtune system sampling data

Visualization
All data in one place, convenient to compare

Extensibility
Add new metrics, new tools or change workload

Other uses, in addition to overall performance
Feature tuning, Regression testing

Slide 12

APPR – How it works

APPR
Framework

OpenOffice

Startup Options

Pause/Load

HooksHooksHooks

Daemon

Report Gen

Viz

strace

monitor

vtune

Environment
RTL

macros

Workload

Logs

Startup & synchronization
Pause until all utilities loaded & ready

Monitoring & data gathering
Trigger actions based on source markers

Correlation & visualization

Slide 13

APPR – Demo

APPR Visualized Example Output

Slide 14

Approaches under Investigation

Slide 15

Config Manager

Profiling shows lot of config activity (green, above)

Several hundred file reads & writes
Scattered across disk

lstat as an indicator
System call penalty
487 times on startup
Multi-paths to lstat (right)
Apparent redundancy

Possible remedies
Reduce or defer
Different backend
Initial caching

framework::...initializeConfigAccess
framework::...readConfigData

main-->sal_main-->SVMain-->desktop::Main

cppu::...createInstanceWithContext

fcfg_*_types.xcu

..StartModule/foobar...

Slide 16

Disk Access Patterns

Scattered disk accesses – seek penalty.
Mix of code and configuration files at startup
“warm start” may access disk – config + page faults
Theoretical speedup: 1.5x to 3x

Goal: Identify & exploit access patterns
Gather and analyze traces for workload + usage
Find deterministic sequences & map to file/offsets.
Change high level algorithms, e.g. config manager
Packaging changes
Disk block reordering utility

Slide 17

Threading & Rendering

Threading can potentially improve startup.
Real as well as perceived

Examples:
Impress: Render 1st slide while file being read
Calc: Render visible sheet, background others

Goal:
Start discussion on problems
Understand bottlenecks & work involved
Prototype specific threading based improvements

Slide 18

Conclusions

Startup is one of the oft-heard user complaints
OpenOffice 2.0 is faster than 1.1
But, still considered to be slow by many
Especially with document – empty or loaded

Potential for speedup, promising approaches
Pre-linking, symbol visibility has helped

Call to Action:
Discussion on ideas & gotchas
Give us your feedback & suggestions
Use APPR on code areas you care or know about
Better collaboration

