0’[;6;01: ficeorg

OpenOffice.org 2.0

Developer's Guide

This documentation is distributed under licenses restricting its use. You may
make copies of and redistribute it, but you may not modify or make derivative
works of this documentation without prior written authorization of Sun and its
licensors, if any.

Copyright 2005 Sun Microsystems, Inc.

Contents

1 Reader's Guide

1.1
1.2
1.3
1.4
15
1.6

What This Manual Covers

How This Book is Organized
OpenOffice.org Version History
Related documentation
Conventions
Acknowledgments

2 First Steps

2.1
2.2
23

24
25

Programming with UNO
Fields of Application for UNO
Getting Started
2.3.1 Required Files
2.3.2 Installation Sets
2.3.3 Configuration
Enable Java in OpenOffice.org
Use Java UNO class files
Add the API Reference to your IDE
2.3.4 First Contact
Getting Started
Service Managers
Failed Connections
How to get Objects in OpenOffice.org
Working with Objects
2.5.1 Objects, Interfaces, and Services
Objects
Interfaces
Services
2.5.2 Using Services
Using Interfaces
Using Properties
253 Example: Working with a Spreadsheet Document
2,54 Common Types
Basic Types
Strings
Enum Types and Groups of Constants
255 Struct
256 Any
2.5.7 Sequence
2.5.8 Element Access
Name Access

27

27
27
28
28
29
29

31

31
31
32
32
32
33
33
33
33
34
34
36
37
37
38
39
39
39
39
41
43
45
45
46
47
47
48
48
49
50
51
53

Index Access 54

Enumeration Access 54

2.6 How do I know Which Type I Have? 55
2.7 Example: Hello Text, Hello Table, Hello Shape 56
2.7.1 Common Mechanisms for Text, Tables and Drawings 56
2.7.2 Creating Text, Tables and Drawing Shapes 61
Text, Tables and Drawings in Writer 61

Text, Tables and Drawings in Calc 62

Drawings and Text in Draw 63

Professional UNO 65
3.1 Introduction 65
3.2 API Concepts 66
3.2.1 Data Types 66
Simple Types 66

The Any Type 67

Interfaces 67

Services 69

Structs 74

Predefined Values 75

Sequences 76

Modules 76

Exceptions 76

Singletons 77

3.2.2 Understanding the API Reference 77
Specification, Implementation and Instances 77

Object Composition 78

3.3 UNO Concepts 79
3.3.1 UNO Interprocess Connections 79
Starting OpenOffice.org in Listening Mode 79

Importing a UNO Object 80

Characteristics of the Interprocess Bridge 81

Opening a Connection 82

Creating the Bridge 84

Closing a Connection 85

Example: A Connection Aware Client 86

3.3.2 Service Manager and Component Context 88
Service Manager 88

Component Context 89

3.3.3 Using UNO Interfaces 92
3.3.4 Properties 95
3.3.5 Collections and Containers 99
33.6 Event Model 102

3.3.7 Exception Handling 102

34

User-Defined Exceptions
Runtime Exceptions
Good Exception Handling
3.3.8 Lifetime of UNO Objects
acquire() and release()
The XComponent Interface
Children of the XEventListener Interface
Weak Objects and References
Differences Between the Lifetime of C++ and Java Objects
3.3.9 Object Identity
UNO Language Bindings
34.1 Java Language Binding
Getting a Service Manager
Transparent Use of Office UNO Components
Handling Interfaces
Type Mappings
34.2 C++ Language Binding
Library Overview
System Abstraction Layer
File Access
Threadsafe Reference Counting
Threads and Thread Synchronization
Socket and Pipe
Strings
Establishing Interprocess Connections
Transparent Use of Office UNO Components
Type Mappings
Using Weak References
Exception Handling in C++
3.4.3 OpenOffice.org Basic
Handling UNO Objects
Mapping of UNO and Basic Types
Case Sensitivity
Exception Handling
Listeners
34.4 Automation Bridge
Introduction
Requirements
A Quick Tour
The Service Manager Component
Using UNO from Automation
Using Automation Objects From UNO
Type Mappings
Automation Objects with UNO Interfaces

103
104
104
105
105
106
108
109
109
111
111
112
112
113
115
117
129
129
131
131
131
132
132
132
133
134
135
143
144
145
145
151
159
159
160
162
162
163
163
165
167
173
175
189

345

DCOM

The Bridge Services

Unsupported COM Features
CLI Language Binding

About the Language Binding

Terms

Requirements

The Language Binding DLLs

Type Mapping

Lifetime Management and Obtaining Interfaces

Writing Client Programs

4 Writing UNO Components

4.1 Required Files
4.2 Using UNOIDL to Specify New Components

43
44

421

4.2.2

Writing the Specification
Preprocessing
Grouping Definitions in Modules
Simple Types
Defining an Interface
Defining a Service
Defining a Sequence
Defining a Struct
Defining an Exception
Predefining Values
Using Comments
Singleton
Reserved Types
Published Entities
Generating Source Code from UNOIDL Definitions

Component Architecture

Core Interfaces to Implement

441

442

443

444
445

XlInterface
Requirements for queryInterface()
Reference Counting
XTypeProvider
Provided Types
ImplementationID
XServicelnfo
Implementation Name
Supported Service Names
XWeak
XComponent
Disposing of an XComponent

192
194
196
197
197
197
197
198
198
210
211

215

216
217
217
218
219
219
220
223
225
226
227
227
229
230
230
230
231
232
233
235
236
236
236
237
237
237
237
238
238
239
239

45

4.6

4.7

44.6
44.7
4438
449

Xlnitialization
XMain
XAggregation
XUnoTunnel

Simple Component in Java

451

452
453
454
455

45.6
4.5.7
458

459

Class Definition with Helper Classes
XlInterface, XTypeProvider and XWeak
XServicelnfo
Implementing your own Interfaces
Providing a Single Factory Using Helper Method
Write Registration Info Using Helper Method
Implementing without Helpers
Xlnterface
XTypeProvider
XComponent
Storing the Service Manager for Further Use
Create Instance with Arguments
Possible Structures for Java Components
One Implementation per Component File
Multiple Implementations per Component File
Running and Debugging Java Components
Debugging
The Java Environment in OpenOffice.org
Troubleshooting

C++ Component

4.6.1

4.6.2
4.6.3
4.6.4
4.6.5
4.6.6

4.6.7
4.6.8
4.6.9
4.6.10

Class Definition with Helper Template Classes
XlInterface, XTypeProvider and XWeak
XServicelnfo

Implementing your own Interfaces

Providing a Single Factory Using a Helper Method

Write Registration Info Using a Helper Method

Provide Implementation Environment

Implementing without Helpers
XlInterface Implementation
XTypeProvider Implementation
Providing a Single Factory
Write Registration Info

Storing the Service Manager for Further Use

Create Instance with Arguments

Multiple Components in One Dynamic Link Library

Building and Testing C++ Components
Build Process

Test Registration and Use

Integrating Components into OpenOffice.org

239
240
240
240
241
242
242
242
243
244
245
246
246
247
247
248
248
249
249
251
253
255
256
257
259
260
260
261
261
261
263
263
264
264
265
266
266
267
267
268
268
268
268
270

4.8
4.9

4.7.1

4.7.2

473

474

4.75

Protocol Handler
Overview
Implementation
Configuration
Installation
Jobs
Overview
Execution Environment
Implementation
Initialization
Returning Results
Configuration
Installation
Using the vnd.sun.star.jobs: URL Schema
List of supported Events
Add-Ons
Overview
Guidelines
Configuration
Installation
Disable Commands
Configuration
Disabling Commands at Runtime
Intercepting Context Menus
Register and Remove an Interceptor
Writing an Interceptor

File Naming Conventions

Deployment Options for Components

49.1

4.9.2

493

494

495
4.9.6

UNO Package Installation Using unopkg
Package Bundle Structure
Background: UNO Registries
UNO Type Library
Component Registration
Command Line Registry Tools
Component Registration Tool
UNO Type Library Tools
Manual Component Installation
Manually Merging a Registry and Adding it to uno.ini or soffice.ini
Bootstrapping a Service Manager
Special Service Manager Configurations
Dynamically Modifying the Service Manager
Creating a ServiceManager from a Given Registry File

4.10 The UNO Executable

Standalone Use Case

271
272
272
281
282
283
283
284
285
287
289
290
292
292
294
295
296
297
297
308
309
311
312
315
315
315
319
321
321
322
324
325
326
326
327
328
328
328
329
331
331
333
333
334

Server Use Case
Using the uno Executable

5 Advanced UNO

5.1 Choosing an Implementation Language
5.1.1 Supported Programming Environments
Java
C++
OpenOffice.org Basic
OLE Automation Bridge
Python
5.1.2 Use Cases
Java
C++
OpenOffice.org Basic
OLE Automation
Python
5.1.3 Recommendation
5.2 Language Bindings
5.2.1 Implementing UNO Language Bindings
Overview of Language Bindings and Bridges
Implementation Options
5.2.2 UNO C++ bridges
Binary UNO Interfaces
C++ Proxy
Binary UNO Proxy
Additional Hints
5.2.3 UNO Reflection API
XTypeProvider Interface
Converter Service
CoreReflection Service
5.2.4 Xlnvocation Bridge
Scripting Existing UNO Objects
Implementing UNO objects
Example: Python Bridge PyUNO
5.25 Implementation Loader
Shared Library Loader
Bridges
5.2.6 Help with New Language Bindings
5.3 Differences Between UNO and Corba
5.4 UNO Design Patterns and Coding Styles
5.4.1 Double-Checked Locking

6 Office Development

336
337

339

339
339
340
340
340
341
341
341
341
341
342
342
342
342
342
343
343
344
345
346
347
348
349
350
350
350
350
354
354
357
358
360
362
362
363
363
365
365

369

6.1

6.2

OpenOffice.org Application Environment

6.1.1

6.1.2
6.1.3

6.14
6.1.5

6.1.7

Overview
Desktop Environment
Framework API
Using the Desktop
Using the Component Framework
Getting Frames, Controllers and Models from Each Other
Frames
Controllers
Models
Window Interfaces
Creating Frames Manually
Handling Documents
Loading Documents
Closing Documents
Storing Documents
Printing Documents
Using the Dispatch Framework
Command URL
Processing Chain
Dispatch Process
Dispatch Results
Dispatch Interception
Java Window Integration
The Window Handle
Using the Window Handle
More Remote Problems

Common Application Features

6.2.1

6.2.2

6.2.3

Clipboard

Using the Clipboard

OpenOffice.org Clipboard Data Formats
Internationalization

Introduction

Overview and Using the API

Implementing a New Locale
Linguistics

Services Overview

Using Spellchecker

Using Hyphenator

Using Thesaurus

Events

Implementing a Spell Checker

Implementing a Hyphenator

Implementing a Thesaurus

369
369
370
371
377
381
382
383
388
390
393
394
396
396
404
409
410
411
411
411
413
416
417
418
418
419
421
421
421
422
426
426
426
427
429
440
440
442
444
445
446
447
449
449

6.2.4

6.2.5

6.2.6
6.2.7

6.2.8

Integrating Import and Export Filters
Approaches
Document API Filter Development
XML Based Filter Development
Number Formats
Managing Number Formats
Applying Number Formats
Document Events
Path Organization
Path Settings
Path Variables
OpenOffice.org Single Sign-On API
Overview
Implementing the OpenOffice.org SSO API

7 Text Documents

7.1

7.2

7.3

Overview
7.1.1 Example: Fields in a Template
7.1.2 Example: Visible Cursor Position
Handling Text Document Files
7.2.1 Creating and Loading Text Documents
7.2.2 Saving Text Documents
Storing
Exporting
7.2.3 Printing Text Documents

Printer and Print Job Settings
Printing Multiple Pages on one Page

Working with Text Documents

731

7.3.2
733

7.3.4

Word Processing
Editing Text
Iterating over Text
Inserting a Paragraph where no Cursor can go
Sorting Text
Inserting Text Files
Auto Text
Formatting
Navigating
Cursors
Locating Text Contents
Search and Replace
Tables
Table Architecture

Named Table Cells in Rows, Columns and the Table Cursor

Indexed Cells and Cell Ranges

450
450
451
465
472
473
474
476
481
481
488
498
498
499

503

503
506
507
509
509
510
510
510
511
511
512
513
513
513
517
519
519
519
519
520
527
527
527
528
531
531
534
537

Table Naming, Sorting, Charting and Autoformatting 537

Text Table Properties 537

Inserting Tables 538

Accessing Existing Tables 543

7.3.5 Text Fields 543
7.3.6 Bookmarks 549
7.3.7 Indexes and Index Marks 550
Indexes 551

Index marks 553

7.3.8 Reference Marks 554
7.3.9 Footnotes and Endnotes 556
7.3.10 Shape Objects in Text 557
Base Frames vs. Drawing Shapes 557

Text Frames 560

Embedded Objects 562

Graphic Objects 565

Drawing Shapes 566

7.3.11 Redline 568
7.3.12 Ruby 569
7.4 Overall Document Features 569
7.4.1 Styles 569
Character Styles 571

Paragraph Styles 571

Frame Styles 572

Page Styles 572
Numbering Styles 572

7.4.2 Settings 573
General Document Information 573

Document Properties 574

Creating Default Settings 574

Creating Document Settings 574

7.4.3 Line Numbering and Outline Numbering 575
Paragraph and Outline Numbering 575

Line Numbering 577

Number Formats 577

7.4.4 Text Sections 578
7.4.5 Page Layout 579
7.4.6 Columns 580
7.4.7 Link targets 581
7.5 Text Document Controller 582
751 TextView 582
7.5.2 TextViewCursor 584

8 Spreadsheet Documents 585

8.1

8.2

8.3

Overview
8.1.1 Example: Adding a New Spreadsheet
8.1.2 Example: Editing Spreadsheet Cells
Handling Spreadsheet Document Files
8.2.1 Creating and Loading Spreadsheet Documents
8.2.2 Saving Spreadsheet Documents
Storing
Exporting
Filter Options
8.2.3 Printing Spreadsheet Documents
Printer and Print Job Settings
Page Breaks and Scaling for Printout
Print Areas
Working with Spreadsheet Documents
8.3.1 Document Structure
Spreadsheet Document
Spreadsheet Services - Overview
Spreadsheet
Cell Ranges
Cells
Cell Ranges and Cells Container
Columns and Rows
8.3.2 Formatting
Cell Formatting
Character and Paragraph Format
Indentation
Equally Formatted Cell Ranges
Table Auto Formats
Conditional Formats
8.3.3 Navigating
Cell Cursor
Referencing Ranges by Name
Named Ranges
Label Ranges
Querying for Cells with Specific Properties
Search and Replace
8.3.4 Sorting
Table Sort Descriptor
8.3.5 Database Operations
Filtering
Subtotals
Database Import
Database Ranges
8.3.6 Linking External Data

585
587
588
589
589
590
590
590
590
593
593
594
594
595
595
595
599
610
612
619
623
626
628
628
628
629
629
633
637
638
639
642
642
644
646
648
648
648
650
651
653
654
655
656

8.4

8.5

8.6

Sheet Links
Cell Area Links
DDE Links
8.3.7 DataPilot
DataPilot Tables
DataPilot Sources
8.3.8 Protecting Spreadsheets
8.3.9 Sheet Outline
8.3.10 Detective
8.3.11 Other Table Operations
Data Validation
Data Consolidation
Charts
Scenarios
Overall Document Features
8.4.1 Styles
Cell Styles
Page Styles
8.4.2 Function Handling
Calculating Function Results
Information about Functions
Recently Used Functions
8.4.3 Settings
Spreadsheet Document Controller
8.5.1 Spreadsheet View
8.5.2 View Panes
8.5.3 View Settings
8.5.4 Range Selection
Spreadsheet Add-Ins
8.6.1 Function Descriptions
8.6.2 Service Names
8.6.3 Compatibility Names
8.6.4 Custom Functions
8.6.5 Variable Results

Drawing Documents and Presentation Documents

9.1

9.2

Overview
9.1.1 Example: Creating a Simple Organizational Chart
Handling Drawing Document Files
9.2.1 Creating and Loading Drawing Documents
9.2.2 Saving Drawing Documents
Storing
Exporting
Filter Options

656
658
659
660
660
664
673
673
673
674
674
675
676
677
680
680
681
682
683
683
684
685
685
686
686
688
689
689
692
692
693
693
693
694

697

697
699
701
701
702
702
703
704

9.2.3 Printing Drawing Documents 705

Printer and Print Job Settings 705

Special Print Settings 707

9.3 Working with Drawing Documents 707
9.3.1 Drawing Document 707
Document Structure 707

Page Handling 708

Page Partitioning 709

9.3.2 Shapes 709
Bezier Shapes 715

Shape Operations 718

9.3.3 Inserting Files 730
9.3.4 Navigating 730

9.4 Handling Presentation Document Files 731
9.4.1 Creating and Loading Presentation Documents 731
9.4.2 Printing Presentation Documents 731

9.5 Working with Presentation Documents 731
9.5.1 Presentation Document 731
9.5.2 Presentation Settings 733
Custom Slide Show 734

Presentation Effects 736

Slide Transition 736

Animations and Interactions 737

9.6 Overall Document Features 741
9.6.1 Styles 741
Graphics Styles 741

Presentation Styles 743

9.6.2 Settings 744
9.6.3 Page Formatting 745

9.7 Drawing and Presentation Document Controller 746
9.7.1 Setting the Current Page, Using the Selection 746
9.7.2 Zooming 746
9.7.3 Other Drawing- Specific View Settings 747

10 Charts 749
10.1 Overview 749
10.2 Handling Chart Documents 749
10.2.1 Creating Charts 749
Creating and Adding a Chart to a Spreadsheet 749

Creating a Chart OLE Object in Draw and Impress 750

Setting the Chart Type 751

10.2.2 Accessing Existing Chart Documents 752

10.3 Working with Charts 752

10.3.1 Document Structure 752

10.3.2 Data Access 754

10.3.3 Chart Document Parts 756
Common Parts of all Chart Types 757

Features of Special Chart Types 761

10.4 Chart Document Controller 764
10.5 Chart Add-Ins 764
10.5.1 Prerequisites 764
10.5.2 How Add-Ins work 764
10.5.3 How to Apply an Add-In to a Chart Document 766

11 OpenOffice.org Basic and Dialogs 769
11.1 First Steps with OpenOffice.org Basic 770
Step By Step Tutorial 770

A Simple Dialog 775

11.2 OpenOffice.org Basic IDE 780
11.2.1 Managing Basic and Dialog Libraries 781
OpenOffice.org Basic Macros Dialog 781

OpenOffice.org Basic Macro Organizer Dialog 783

11.2.2 Basic IDE Window 788
Basic Source Editor and Debugger 790

Dialog Editor 792

11.2.3 Assigning Macros to GUI Events 797

11.3 Features of OpenOffice.org Basic 799
11.3.1 Functional Range Overview 799
Screen I/0 Functions 799

File I/0 800

Date and Time Functions 801

Numeric Functions 801

String Functions 801

Specific UNO Functions 802

11.3.2 Accessing the UNO API 802
StarDesktop 802
ThisComponent 803

11.3.3 Special Behavior of OpenOffice.org Basic 804
Threads 804

Rescheduling 804

11.4 Advanced Library Organization 806
11.4.1 General Structure 806
11.4.2 Accessing Libraries from Basic 807
Library Container Properties in Basic 807

Loading Libraries 808

Library Container API 809

11.4.3 Variable Scopes 811

11.5 Programming Dialogs and Dialog Controls 812

11.5.1 Dialog Handling 812

Showing a Dialog 812

Getting the Dialog Model 813

Dialog as Control Container 813

Dialog Properties 814

Common Properties 814

Multi-Page Dialogs 814

11.5.2 Dialog Controls 815
Command Button 815

Image Control 815

Check Box 816

Option Button 816

Label Field 816

Text Field 817

List Box 818

Combo Box 818
Horizontal/Vertical Scroll Bar 819

Group Box 820

Progress Bar 820
Horizontal/Vertical Line 821

Date Field 821

Time Field 821

Numeric Field 821

Currency Field 822

Formatted Field 822

Pattern Field 822

File Control 822

11.6 Creating Dialogs at Runtime 823
11.7 Library File Structure 826
11.7.1 Application Library Container 827
11.7.2 Document Library Container 829

11.8 Library Deployment 831
Package Structure 831

Path Settings 832

Additional Options 833

12 Database Access 835
12.1 Overview 835
12.1.1 Capabilities 835
Platform Independence 835

Functioning of the OpenOffice.org API Database Integration 835

Integration with OpenOffice.org API 836

12.1.2 Architecture 836

12.1.3 Example: Querying the Bibliography Database 836

12.2 Data Sources in OpenOffice.org API

12.2.1 DatabaseContext

12.2.2 DataSources
The DataSource Service
Queries
Forms and Reports
Document Links
Tables and Columns

12.2.3 Connections
Understanding Connections

Connecting Using the DriverManager and a Database URL

Connecting Through a Specific Driver
Driver Specifics
Connection Pooling
Piggyback Connections
12.3 Manipulating Data

12.3.1 The RowSet Service
Usage
Events and Other Notifications
Clones of the RowSet Service

12.3.2 Statements
Creating Statements
Inserting and Updating Data
Getting Data from a Table

12.3.3 Result Sets
Retrieving Values from Result Sets
Moving the Result Set Cursor
Using the getXXX Methods
Scrollable Result Sets
Modifiable Result Sets
Update
Insert
Delete
Seeing Changes in Result Sets

12.3.4 ResultSetMetaData

12.3.5 Using Prepared Statements
When to Use a PreparedStatement Object
Creating a PreparedStatement Object

Supplying Values for PreparedStatement Parameters

12.3.6 PreparedStatement From DataSource Queries
12.4 Database Design
12.4.1 Retrieving Information about a Database
Retrieving General Information
Determining Feature Support

838
838
841
841
843
851
855
856
861
861
864
865
865
869
871
871
871
871
875
877
877
878
878
880
881
884
884
885
887
889
889
891
892
893
894
894
894
895
895
896
897
897
897
898

12.4.2
12.4.3

Database Limits

SQL Objects and their Attributes
Using DDL to Change the Database Design
Using SDBCX to Access the Database Design

The Extension Layer SDBCX

Catalog Service

Table Service

Column Service

Index Service

Key Service

View Service

Group Service

User Service

The Descriptor Pattern

Adding an Index

Creating a User

Adding a Group

12.5 Using DBMS Features

12.5.1
12.5.2

Transaction Handling
Stored Procedures

12.6 Writing Database Drivers

12.6.1
12.6.2
12.6.3
12.6.4
12.6.5

12.6.6

13 Forms

SDBC Driver

Driver Service

Connection Service

XDatabaseMetaData Interface

Statements
PreparedStatement
Result Set

Support Scalar Functions
Open Group CLI Numeric Functions
Open Group CLI String Functions
Open Group CLI Time and Date Functions
Open Group CLI System Functions
Open Group CLI Conversion Functions
Handling Unsupported Functionality

13.1 Introduction
13.2 Models and Views

13.2.1
13.2.2
13.2.3
13.2.4

The Model-View Paradigm
Models and Views for Form Controls
Model-View Interaction
Form Layer Views
View Modes

898
898
899
902
902
903
904
907
909
911
913
914
916
916
920
920
920
921
921
922
922
923
925
926
927
928
928
928
928
929
929
930
931
931
931

933

933
934
934
934
935
936
936

Locating Controls 936

Focussing Controls 936

13.3 Form Elements in the Document Model 937
13.3.1 A Hierarchy of Models 937
FormComponent Service 937
FormComponents Service 937

Logical Forms 938

Forms Container 938

Form Control Models 939

13.3.2 Control Models and Shapes 940
Programmatic Creation of Controls 941

13.4 Form Components 942
13.4.1 Basics 942
Control Models 942

Forms 944

13.4.2 HTML Forms 945
13.5 Data Awareness 945
13.,5.1 Forms 945
Forms as Row Sets 945

Loadable Forms 945

Sub Forms 946

Filtering and Sorting 947

Parameters 948

13.5.2 Data Aware Controls 949
Control Models as Bound Components 950

Committing Controls 951

13.6 External value suppliers 952
13.6.1 Value Bindings 953
Form Controls accepting Value Bindings 954

13.6.2 External List Sources 957

13.7 Validation 959
13.7.1 Validation in OpenOffice.org 962
13.7.2 Validations and Bindings 962

13.8 Scripting and Events 962
13.9 Common Tasks 964
13.9.1 Initializing Bound Controls 964
13.9.2 Automatic Key Generation 964
13.9.3 Data Validation 965
13.9.4 Programmatic Assignment of Scripts to Events 966

14 Universal Content Broker 969
14.1 Overview 969
14.1.1 Capabilities 969

14.1.2 Architecture 969

14.2
14.3
14.4

14.5

Services and Interfaces
Content Providers
Using the UCB API
14.4.1 Instantiating the UCB
14.4.2 Accessing a UCB Content
14.4.3 Executing Content Commands
14.4.4 Obtaining Content Properties
14.4.5 Setting Content Properties
14.4.6 Folders
Accessing the Children of a Folder
14.4.7 Documents
Reading a Document Content
Storing a Document Content
14.4.8 Managing Contents
Creating
Deleting
Copying, Moving and Linking
UCB Configuration
14.5.1 UCP Registration Information
14.5.2 Unconfigured UCBs
14.5.3 Preconfigured UCBs
14.5.4 Content Provider Proxies

15 Configuration Management

15.1

15.2
15.3

15.4

15.5

15.6

Overview

15.1.1 Capabilities

15.1.2 Architecture

Object Model

Configuration Data Sources

15.3.1 Connecting to a Data Source
15.3.2 Using a Data Source
Accessing Configuration Data
15.4.1 Reading Configuration Data
15.4.2 Updating Configuration Data
Customizing Configuration Data

15.5.1 Creating a Custom Configuration Schema

15.5.2 Preparing Custom Configuration Data
15.5.3 Installing Custom Configuration Data
Adding a Backend Data Store

16 JavaBean for office components

16.1
16.2
16.3

Introduction
Using the OOoBean
The OOoBean by Example

970
972
972
973
973
974
975
976
977
977
979
979
981
981
981
983
984
985
985
985
987
988

991

991
991
991
994
996
996
999
1002
1002
1005
1013
1014
1015
1016
1017

1019

1019
1019
1020

16.4
16.5

16.6

API Overview

Configuring the Office Bean

16.5.1 Default Configuration

16.5.2 Customized Configuration

Internal Architecture

16.6.1 The Internal Office Bean API

16.6.2 OfficeConnection Interface

16.6.3 OfficeWindow Interface

16.6.4 ContainerFactory Interface

16.6.5 LocalOfficeConnection and LocalOfficeWindow

17 Accessibility

17.1
17.2
17.3
17.4
17.5
17.6

17.7

Overview
Bridges
Accessibility Tree
Content Information
Listeners and Broadcasters
Implementing Accessible Objects
17.6.1 Implementation Rules
17.6.2 Services
Using the Accessibility API
17.7.1 A Simple Screen Reader
Features
Class Overview
Putting the Accessibility Interfaces to Work

18 Scripting Framework

18.1

18.2

18.3

Introduction
18.1.1 Structure of this Chapter
18.1.2 Who Should Read this Chapter
Using the Scripting Framework
18.2.1 Running macros
18.2.2 Editing, Creating and Managing Macros
The Organizer dialogs for BeanShell and JavaScript
BeanShell Editor
JavaScript Editor
Basic and Dialogs
Macro Recording
Writing Macros
18.3.1 The HelloWorld macro
18.3.2 Using the OpenOffice.org API from macros
18.3.3 Handling arguments passed to macros
18.3.4 Creating dialogs from macros
18.3.5 Compiling and Deploying Java macros

1021
1023
1023
1024
1025
1025
1026
1027
1027
1028

1029

1029
1030
1030
1031
1031
1032
1032
1032
1033
1033
1035
1035
1036

1049

1049
1049
1050
1050
1050
1051
1052
1053
1053
1055
1055
1055
1055
1056
1057
1057
1058

18.4 How the Scripting Framework works
18.5 Writing a LanguageScriptProvider UNO Component Using the Java Helper Classes
18.5.1 The ScriptProvider abstract base class
18.5.2 Implementing the XScript interface
18.5.3 Implementing the ScriptEditor interface
18.5.4 Building and registering your ScriptProvider
18.6 Writing a LanguageScriptProvider UNO Component from scratch
18.6.1 Scripting Framework URI Specification
18.6.2 Storage of Scripts
18.6.3 Implementation
18.6.4 Integration with Package Manager

1059
1062
1062
1064
1065
1066
1066
1067
1067
1068
1071

Overview of how ScriptingFramework integrates with the Package Manager

API 1072

Appendix A: OpenOffice.org API-Design- Guidelines

A.1 General Design Rules
A.1.1 Universality
A.1.2 Orthogonality
A.1.3 Inheritance
A.1.4 Uniformity
A.1.5 Correct English
A.1.6 Identifier Naming Convention

A.2 Definition of API Elements
A.2.1 Attributes
A.2.2 Methods
A.2.3 Interfaces
A.2.4 Properties
A.2.5 Events
A.2.6 Services
A.2.7 Exceptions
A.2.8 Enums
A.2.9 Typedefs
A.2.10 Structs
A.2.11 Parameter

A.3 Special Cases

A.4 Abbreviations

A.5 Source Files and Types

Appendix B: IDL Documentation Guidelines

B.1 Introduction
B.1.1 Process
B.1.2 File Assembly
B.1.3 Readable & Editable Structure
B.14 Contents

1077

1077
1077
1078
1078
1078
1078
1078
1079
1079
1080
1081
1082
1082
1083
1083
1084
1084
1085
1085
1086
1086
1087

1089

1089
1089
1089
1090
1090

B.2

B3

B4

File structure

B.2.1 General

B.2.2 File-Header
B.2.3 File-Footer
Element Documentation

B.3.1 General Element Documentation

B.3.2 Example for a Major Element Documentation
B.3.3 Example for a Minor Element Documentation

Markups and Tags

B.4.1 Special Markups

B.4.2 Special Documentation Tags
B.43 Useful XHTML Tags

Appendix C: Universal Content Providers

C.1

C.2

C3

C4

C5

The Hierarchy Content Provider

C.1.1 Preface

C.1.2 HCP Contents

C.1.3 Creation of New HCP Content
C.1.4 URL Scheme for HCP Contents
C.1.5 Commands and Properties
The File Content Provider

C.2.1 Preface

C.2.2 File Contents

C.2.3 Creation of New File Contents
C.2.4 URL Schemes for File Contents
C.2.5 Commands and Properties
The FTP Content Provider

C.3.1 Preface

C.3.2 FTP Contents

C.3.3 Creation of New FTP Content
C.3.4 URL Scheme for FTP Contents
C.3.5 Commands and Properties
The WebDAYV Content Provider

C.4.1 Preface

C.4.2 DCP Contents

C.4.3 Creation of New DCP Contents
C.4.4 Authentication

C.45 Property Handling

C.4.6 URL Scheme for DCP Contents
C.4.7 Commands and Properties
The Package Content Provider

C.5.1 Preface

C.5.2 PCP Contents

C.5.3 Creation of New PCP Contents

1090
1090
1091
1092
1092
1092
1093
1094
1094
1094
1095
1097

1101

1101
1101
1101
1102
1102
1103
1103
1103
1103
1104
1104
1105
1105
1105
1105
1106
1107
1107
1108
1108
1108
1109
1109
1109
1110
1111
1111
1111
1111
1112

C54
C55

URL Scheme for PCP Contents
Commands and Properties

C.6 The Help Content Provider

C.6.1
C.6.2
C.6.3
Co64

Preface

Help Content Provider Contents
URL Scheme for Help Contents
Properties and Commands

Appendix D: UNOIDL Syntax Specification

Glossary

Index

1112
1113
1113
1113
1114
1114
1115

1119

1121

1139

Reader's Guide

1.1 What This Manual Covers

This manual describes how to write programs using the component technology UNO (Universal
Network Objects) with OpenOffice.org.

Most examples provided are written in Java. As well as Java, the language binding for C++, the
UNO access for OpenOffice.org Basic and the OLE Automation bridge that uses OpenOffice.org
through Microsoft's component technology COM/DCOM is described.

1.2 How This Book is Organized

First Steps
The First Steps chapter describes the setting up of a Java UNO development environment to
achieve the solutions you need. At the end of this chapter, you will be equipped with the essen-
tials required for the following chapters about the OpenOffice.org applications.

Professional UNO Projects
This chapter introduces API and UNO concepts and explains the specifics of the programming
languages and technologies that can be used with UNO. It will help you to write industrial-
strength UNO programs, use one of the languages besides Java or improve your understanding
of the API reference.

Writing UNO Components
This chapter describes how to write UNO components. It also provides an insight into the
UNOIDL (UNO Interface Definition Language) language and the inner workings of service
manager. Before beginning this chapter, you should be familiar with the First Steps and Profes-
sional UNO chapters.

Advanced UNO
This chapter describes the technical basis of UNO, how the language bindings and bridges
work, how the service manager goes about its tasks and what the core reflection actually does.

Olffice Development
This chapter describes the application framework of the OpenOffice.org application that
includes how the OpenOffice.org API deals with the OpenOffice.org application and the fea-
tures available across all parts of OpenOffice.org.

27

28

Text Documents - Spreadsheet Documents - Drawings and Presentations — Chart
These chapters describes how OpenOffice.org revolves around documents. These chapters
teach you what to do with these documents programmatically.

Basic and Dialogs
This chapter provides the functionality to create and manage Basic macros and dialogs.

Database Access
This chapter describes how you can take advantage of this capability in your own projects
OpenOffice.org can connect to databases in a universal manner.

Forms
This chapter describes how OpenOffice.org documents contain form controls that are pro-
grammed using an event-driven programming model. The Forms chapter shows you how to
enhance your documents with controls for data input.

UCB
This chapter describes how the Universal Content Broker is the generic resource access service
used by the entire office application. It handles not only files and directories, but hierarchic and
non-hierarchic contents, in general.

OpenOffice.org Configuration
This chapter decribes how the OpenOffice.org API offers access to the office configuration
options that is found in the Tools — Options dialog.

OlfficeBean
This chapter describes how the OfficeBean Java Bean component allows the developer to inte-
grate office functionality in Java applications.

1.3 OpenOffice.org Version History

OpenOffice.org exists in two versions www.openoffice.org
OpenOffice.org - an open source edition
StarOffice and StarSuite - "branded"editions derived from OpenOffice.org

In 2000, Sun Microsystems released the source code of their current developer version of StarOffice
on www.openoffice.org, and made the ongoing development process public. Sun's development
team, which developed StarOffice, continued its work on www.openoffice.org, and developers from
all over the world joined them to port, translate, repair bugs and discuss future plans. StarOffice
6.0 and OpenOffice.org 1.0, which were released in spring 2002, share the same code basis.

1.4 Related documentation

The api and udk projects on www.openoffice.org have related documentation, examples and FAQs
(frequently asked questions) on the OpenOffice.org API. Most important are probably the refer-
ences, you can find them at api.openoffice.org or udk. openoffice.org.

The API Reference covers the programmable features of OpenOffice.org.
The Java Reference describes the features of the Java UNO runtime environment.

The C++ Reference is about the C++ language binding.

OpenOffice.org 2.0 Developer's Guide « May 2005

1.5 Conventions

This book uses the following formatting conventions:

Bold refers to the keys on the keyboard or elements of a user interface, such as the OK button
or File menu.

Italics are used for emphasis and to signify the first use of a term. Italics are also used for web
sites, file and directory names and email addresses.

Courier New is used in all Code Listings and for everything that is typed when programming.

1.6 Acknowledgments

A publication like this can never be the work of a single person — it is the result of tremendous
team effort. Of course, the OpenOffice.org/StarOffice development team played the most impor-
tant role by creating the API in the first place. The knowledge and experience of this team will be
documented here. Furthermore, there were several devoted individuals who contributed to
making this documentation reality.

First of all, we would like to thank Ralf Kuhnert and Dietrich Schulten. Using their technical exper-
tise and articulate mode of expression, they accomplished the challenging task of gathering the
weatlth of API knowledge from the minds of the developers and transforming it into an under -
standable document.

Many reviewers were involved in the creation of this documentation. Special thanks go to Michael
Honnig who was one of the few who reviewed almost every single word. His input also played a
decisive role in how the documentation was structured. A big thank you also goes to Diane O'Brien
for taking on the daunting task of reviewing the final draft and providing us with extensive feed-
back at such short notice.

When looking at the diagrams and graphics, it is clear that a creative person with the right touch
for design and aesthetics was involved. Many thanks, therefore, are due Stella Schulze who re-
drew all of the diagrams and graphics from the originals supplied by various developers. We also
thank Svante Schubert who converted the original XML file format into HTML pages and was
most patient with us in spite of our demands and changes. Special thanks also to Jorg Heilig, who
made this whole project possible.

Jirgen would like to thank Gotz Wohlberg for all his help in getting the right people involved and
making sure things ran smoothly.

Gotz would like to thank Jirgen Schmidt for his never-ending energy to hold everything together
and for pushing the contributors in the right direction. He can be considered as the heart of the
opus because of his guidance and endurance throughout the entire project.

We would like to take this opportunity to thank all these people —and anyone else we forgot! — for

their support.

Jiirgen Schmidt, G6tz Wohlberg

29

First Steps

This chapter shows you the first steps when using the OpenOffice.org API. Following these steps is
essential to understand and use the chapters about OpenOffice.org documents such as 7 Text Docu-
ments, 8 Spreadsheet Documents and 9 Drawing. After you have successfully done the first steps, you
can go directly to the other chapters of this manual.

The focus of the first steps will be Java, but other languages are covered as well. If you want to use
OpenOffice.org Basic afterwards, please refer to the chapters 11.1 OpenOlffice.org Basic and Dialogs -
First Steps with OpenOffice.org Basic and 3.4.3 Professional UNO - UNO Language Bindings -
OpenOlffice.org Basic. The usage of C++ is described in 3.4.2 Professional UNO - UNO Language Bind-
ings - C++ Language Binding.

2.1 Programming with UNO

UNO (pronounced ['ju:nou]) stands for Universal Network Objects and is the base component
technology for OpenOffice.org. You can utilize and write components that interact across lan-
guages, component technologies, computer platforms, and networks. Currently, UNO is available
on Linux, Solaris, Windows, Power PC, FreeBSD and Mac OS X. Other ports are still being devel-
oped at OpenOffice.org. The supported programming languages are Java, C++ and
OpenOffice.org Basic. As well, UNO is available through the component technology Microsoft
COM for many other languages. On OpenOffice.org there is also a language binding for Python
available.

With OpenOffice.org 2.0, UNO is also programmable with .NET languages using the new
Common Language Infrastructure binding. In addition, the new scripting framework offers the use
of the API through several scripting languages, such as Javascript, Beanshell or Jython. See 18
Scripting Framework for more details.

UNO is used to access OpenOffice.org, using its Application Programming Interface (API). The
OpenOffice.org API is the comprehensive specification that describes the programmable features
of OpenOffice.org.

2.2 Fields of Application for UNO

You can connect to a local or remote instance of OpenOffice.org from C++, Java and COM/DCOM.
C++ and Java Desktop applications, Java servlets, Java Server Pages, JScript and VBScript, and
languages, such as Delphi, Visual Basic and many others can use OpenOffice.org to work with
Office documents.

It is possible to develop UNO Components in C++ or Java that can be instantiated by the office
process and add new capabilities to OpenOffice.org. For example, you can write Chart Add-ins or

31

Calc Add-ins, Add-ons, linguistic extensions, new file filters, database drivers. You can even write
complete applications, such as a groupware client.

UNO components, as Java Beans, integrate with Java IDEs (Integrated Development Environment)
to give easy access to OpenOffice.org. Currently, a set of such components is under development
that will allow editing OpenOffice.org documents in Java Frames.

OpenOffice.org Basic cooperates with UNO, so that UNO programs can be directly written in
OpenOffice.org. With this method, you supply your own office solutions and wizards based on an
event-driven dialog environment.

The OpenOffice.org database engine and the data aware forms open another wide area of opportu -
nities for database driven solutions.

2.3 Getting Started

A number of files and installation sets are required before beginning with the OpenOffice.org API.

2.3.1 Required Files

These files are required for any of the languages you use.

OpenOlffice.org Installation
Install a copy of OpenOffice.org. The current version is OpenOffice.org 1.1.0.

You can download OpenOffice.org from www.openoffice.org. StarOffice can be obtained from
Sun Microsystems or through your distributors.

Note: This book focuses on the current version.

API Reference
The OpenOffice.org API reference is part of the Software Development Kit and provides
detailed information about OpenOffice.org objects. The latest version can be found on, or
downloaded from, the documents section at api.openoffice.org.

2.3.2 Installation Sets

The following installation sets are necessary to develop OpenOffice.org API applications with Java.
This chapter describes how to set up a Java IDE for the OpenOffice.org API.

JDK 1.3.1
Java applications for OpenOffice.org 1.1.0 require the Java Development Kit 1.3.1 or later.
Download and install a JDK from java.sun.com. To get all features, Java 1.4.1 01 is required. The
recommendation is to use Java 1.4.2 05, because of important bug fixes.

Java IDE
Download an Integrated Development Environment (IDE), such as NetBeans from
www.netbeans.org or the Sun™ One Java Studio from Sun Microsystems. Other IDEs can be
used, but NetBeans/Sun One Java Studio offers the best integration. The integration of
OpenOffice.org with IDEs such as NetBeans is an ongoing effort. Check the files section of
api.openoffice.org for the latest information about NetBeans and other IDEs.

32 OpenOffice.org 2.0 Developer's Guide « May 2005

OpenOlffice.org Software Development Kit (SDK)
Obtain the OpenOffice.org Software Development Kit (SDK) from www.openoffice.org. It con-
tains the build environment for the examples mentioned in this manual and reference docu-
mentation for the OpenOffice.org API, for the Java UNO runtime, and the C++ API. It also of-
fers more example sources. By means of the SDK you can use GNU make to build and run the
examples we mention here.

Unpack the SDK somewhere in your file system. The file index.html gives an overview of the
SDK. For detailed instructions which compilers to use and how to set up your development
environment, please refer to the SDK installation guide.

2.3.3 Configuration

Enable Java in OpenOffice.org

OpenOffice.org uses a Java Virtual Machine to instantiate components written in Java. From
OpenOffice.org 2.0 on, Java is found automatically during startup, or latest when Java function-
ality is required. If you prefer to preselect a JRE or JDK, or if no Java is found, you can configure
Java using the Tools — Options dialog in OpenOffice.org and select the section OpenOffice.org —
Java section. In older versions of OpenOffice.org you can also easily tell the office which JVM to
use: launch the jvmsetup executable from the programs folder under the OpenOffice.org, select an
installed JRE or JDK and click OK. Close the OpenOffice.org including the Quickstarter in the
taskbar and restart OpenOffice.org. Furthermore, open the Tools - Options dialog in
OpenOffice.org, select the section OpenOffice.org - Security and make sure that the Java enable
option is checked.

Use Java UNO class files

Next, the OpenOffice.org class files must be made known to the Java IDE. For NetBeans these Java
UNO jar files must be mounted to a project. The following steps show how to create a new project
and mount class files in NetBeans from version 3.5.1.

1. From the Project menu, select Project Manager. Click the New ... button in the Project Manager
window to create a new project. NetBeans uses your new project as the current project.

2. Activate the NetBeans Explorer window—it should contain a Filesystems item (to display the
NetBeans Explorer window, click View - Explorer). Open its context menu and select Mount —
Archive Files, navigate to the folder <OfficePath>/program/classes, choose at least jurt.jar,
unoil.jar, ridl.jar and juh.jar in that directory and click Finish to mount the OpenOffice.org jars in
your project. As an alternative, you can also mount files using File - Mount Filesystem .

3. Finally you need a folder for the source files of your project. Choose Mount — Local Directory
from the context menu of the Filesystems icon and use the file manager dialog to create a new
folder somewhere in your file system. Select it without opening it and click Finish to add it to
your project.

Add the API Reference to your IDE

We recommend to add the API and the Java UNO reference to your Java IDE to get online help for
the OpenOffice.org API and the Java UNO runtime. In NetBeans 3.4.1, follow these steps:

33

Open your project and choose the Tools — Javadoc Manager menu. With the button Add
Folder... add the folders docs/common/refand docs/java/ref of your SDK installation to use the API
and the Java UNO reference in your project.

You can now use Alt + F1to view online help while the cursor is on a OpenOffice.org API or
Java UNO identifier in the source editor window.

2.3.4 First Contact

Getting Started

Since OpenOffice.org 2.0 it is very simple to get a working environment that offers a transparent
use of UNO functionality and of office functionality. The following demonstrates how to write a
small program that initializes UNO, which means that it internally connects to an office or starts a
new office process if necessary and tells you if it was able to get the office component context that
provides the office service manager object. Start the Java IDE or source editor, and enter the fol-
lowing source code for the FirstUnoContact class.

To create and run the class in the NetBeans 3.5.1 IDE, use the following steps:

1. Add a main class to the project. In the NetBeans Explorer window, click the Project
<project_name> tab, right click the Project item, select Add New... to display the New Wizard,
open the Java Classes folder, highlight the template Main, and click Next.

2. In the Name field, enter 'FirstUnoContact' as classname for the Main class and select the folder
that contains your project files. The FirstUnoContact is added to the default package of your
project. Click Finish to create the class.

3. Enter the source code shown below (FirstSteps/FirstUnoContact.java).

4. Add a blank ant script to the project. In the NetBeans Explorer window, click the Project
<project_name> tab, right click the Project item, select Add New to display the New Wizard,
open the Ant Build Scripts folder, highlight the template Blank Ant Project, and click Next.

5. In the Name field, enter 'build FirstUnoContact' as script name for the ant build script and se-
lect the folder that contains your project files. The build FirstUnoContact is added to your
project. Click Finish to create the script.

6. Enter the script code shown below (FirstSteps/build_FirstUnoContact.xml). Adjust the prop-
erty values OFFICE_ HOME and OO_SDK HOME to your own local environment.

7. Select and right click the build FirstUnoContact script, select Execute to build the
example project. Right click the build FirstUnoContact script again, select Run Target to
display more availble targets, select the run target to execute the example.

The FirstUnoContact example (FirstSteps/FirstUnoContact.java):

public class FirstUnoContact {
public static void main (String[] args) {

try {
// get the remote office component context
com.sun.star.uno.XComponentContext xContext =
com.sun.star.comp.helper.Bootstrap.bootstrap() ;

System.out.println("Connected to a running office ...");

com.sun.star.lang.XMultiComponentFactory xMCF =
xContext.getServiceManager () ;

String available = (xMCF != null ? "available" : "not available");
System.out.println("remote ServiceManager is " + available);

34 OpenOffice.org 2.0 Developer's Guide « May 2005

}

catch (java.lang.Exception e) {
e.printStackTrace () ;

}

finally {
System.exit (0) ;

}

}

The example ant build script (FirstSteps/build FirstUnoContact.xml):

<?xml version="1.0" encoding="UTF-8"?>
<project basedir="." default="all" name="FirstUnoContact">

<property name="OFFICE_HOME" value="d:/StarOffice8 m48"/>
<property name="0O SDK HOME" value="d:/SDK/StarOffice8.EA SDK"/>

<target name="init">
<property name="OUTDIR" value="${00_SDK HOME}/WINExample.out/class/FirstUnoContact"/>
</target>

<path id="office.class.path">
<filelist dir="${OFFICE_HOME}/program/classes"
files="jurt.jar,unoil.jar,ridl.jar,juh.jar"/>
</path>

<fileset id="bootstrap.glue.code" dir="${00 SDK HOME}/classes">
<patternset>
<include name="com/sun/star/lib/loader/*.class"/>
<include name="win/unowinreg.dll"/>
</patternset>
</fileset>

<target name="compile" depends="init">
<mkdir dir="${OUTDIR}"/>

<javac debug="true" deprecation="true" destdir="${OUTDIR}" srcdir=".">
<classpath refid="office.class.path"/>
</javac>
</target>

<target name="jar" depends="init,compile">
<jar basedir="${OUTDIR}" compress="true"

jarfile="${OUTDIR}/FirstUnoContact.jar">

<exclude name="**/*. java"/>

<exclude name="*.jar"/>

<fileset refid="bootstrap.glue.code"/>

<manifest>
<attribute name="Main-Class" value="com.sun.star.lib.loader.Loader"/>
<section name="com/sun/star/lib/loader/Loader.class">
<attribute name="Application-Class" value="FirstUnoContact"/>

</section>
</manifest>
</jar>
</target>

<target name="all" description="Build everything." depends="init, compile,jar">
<echo message="Application built. FirstUnoContact!"/>
</target>

<target name="run" description="Try running it." depends="init,all">
<java jar="${OUTDIR}/FirstUnoContact.jar" failonerror="true" fork="true">
</java>

</target>

<target name="clean" description="Clean all build products." depends="init">
<delete>
<fileset dir="${OUTDIR}">
<include name="**/*.class"/>
</fileset>
</delete>
<delete file="${OUTDIR}/FirstUnoContact.jar"/>
</target>

</project>
For an example that connects to the office with C++, see chapter 3.4.2 Professional UNO - UNO

Language Bindings - C++ Language Binding. Accessing the office with OpenOffice.org Basic is
described in 11.1 OpenOffice.org Basic and Dialogs - First Steps with OpenOlffice.org Basic.

The next section describes what happens during the connection between a Java program and
OpenOffice.org.

36

Service Managers

UNO introduces the concept of service managers, which can be considered as “factories” that create
services. For now, it is sufficient to see services as UNO objects that can be used to perform specific
tasks. Later on we will give a more precise definition for the term service.

For example, the following services are available:

com.sun.star.frame. Desktop
maintains loaded documents: is used to load documents, to get the current document, and ac-
cess all loaded documents

com.sun.star.configuration. ConfigurationProvider
yields access to the OpenOffice.org configuration, for instance the settings in the Tools -
Options dialog

com.sun.star.sdb. DatabaseContext
holds databases registered with OpenOffice.org

com.sun.star.system.SystemShellExecute
executes system commands or documents registered for an application on the current platform

com.sun.star.text. GlobalSettings
manages global view and print settings for text documents

Service
Manager

<___-
<_-_-
<____

Service Service Service

VA

Service Service

Hllustration 2.1: Service manager

A service always exists in a component context, which consists of the service manager that created
the service and other data to be used by the service.

The FirstUnoContact class above is considered a client of the OpenOffice.org process,
OpenOffice.org is the server in this respect. The server has its own component context and its own
service manager, which can be accessed from client programs to use the office functionality. The
client program initializes UNO and gets the component context from the OpenOffice.org process.

OpenOffice.org 2.0 Developer's Guide « May 2005

Internally, this initialization process creates a local service manager, establishes a pipe connection
to a running OpenOffice.org process (if necessary a new process is started) and returns the remote
component context. In the first step this is the only thing you have to know. The
com.sun.star.comp.helper.Bootstrap.bootstrap() method initializes UNO and returns the remote
component context of a running OpenOffice.org process. You can find more details about boot-
strapping UNO, the opportunities of different connection types and how to establish a connection
to a UNO server process in the 3.3 Professional UNO - UNO Concepts.

After this first initialization step, you can use the method getServiceManager () from the compo-
nent context to get the remote service manager from the OpenOffice.org process, which offers you
access to the complete office functionality available through the APIL.

Failed Connections
A remote connection can fail under certain conditions:

Client programs should be able to detect errors. For instance, sometimes the bridge might be-
come unavailable. Simple clients that connect to the office, perform a certain task and exit after-
wards should stop their work and inform the user if an error occurred.

Clients that are supposed to run over a long period of time should not assume that a reference
to an initial object will be valid over the whole runtime of the client. The client should resume
even if the connection goes down for some reason and comes back later on. When the connec-
tion fails, a robust, long running client should stop the current work, inform the user that the
connection is not available and release the references to the remote process. When the user tries
to repeat the last action, the client should try to rebuild the connection. Do not force the user to
restart your program just because the connection was temporarily unavailable.

When the bridge has become unavailable and access is tried, it throws a
com.sun.star.lang.DisposedException. Whenever you access remote references in your pro-
gram, catch this Exception in such a way that you set your remote references to null and inform the
user accordingly. If your client is designed to run for a longer period of time, be prepared to get
new remote references when you find that they are currently null.

A more sophisticated way to handle lost connections is be to register a listener at the underlying
bridge object. The chapter 3.3.1 Professional UNO - UNO Concepts - UNO Interprocess Connections
shows how to write a connection-aware client.

2.4 How to get Objects in OpenOffice.org

An object in our context is a software artifact that has methods you can call. Objects are required to
do something with OpenOffice.org. But where do you obtain them?

New objects
In general, new objects or objects which are necessary for a first access are created by service
managers in OpenOffice.org. In the FirstLoadComponent example, the remote service manager
creates the remote Desktop object, which handles application windows and loaded documents
in OpenOffice.org:

Object desktop = xRemoteServiceManager.createInstanceWithContext (
"com.sun.star.frame.Desktop", xRemoteContext) ;

37

38

Document objects

Document objects represent the files that are opened with OpenOffice.org. They are created by
the Desktop object, which has a loadComponentFromURL () method for this purpose.

Objects that are provided by other objects

Objects can hand out other objects. There are two cases:

Features which are designed to be an integral part of the object that provides the feature can
be obtained by get methods in the OpenOffice.org API. It is common to get an object from a
get method. For instance, getSheets () is required for every Calc document, getText () is
essential for every Writer Document and getDrawpages () is an essential part of every Draw
document. After loading a document, these methods are used to get the Sheets, Text and
Drawpages object of the corresponding document. Object-specific get methods are an impor-
tant technique to get objects.

Features which are not considered integral for the architecture of an object are accessible
through a set of universal methods. In the OpenOffice.org API, these features are called
properties, and generic methods are used, such as getPropertyValue (String proper-
tyName) to access them. In some cases such a non-integral feature is provided as an object,
therefore the method getPropertyvalue () can be another source for objects. For instance,
page styles for spreadsheets have the properties "RightPageHeaderContent" and "Left-
PageHeaderContent", that contain objects for the page header sections of a spreadsheet
document. The generic getPropertyvalue () method can sometimes provide an object you
need.

Sets of objects

Objects can be elements in a set of similar objects. In sets, to access an object you need to know
how to get a particular element from the set. The OpenOffice.org API allows four ways to pro-
vide an element in a set. The first three ways are objects with element access methods that allow
access by name, index, or enumeration. The fourth way is a sequence of elements which has no
access methods but can be used as an array directly. How these sets of elements are used will
be discussed later.

The designer of an object decides which of those opportunities to offer, based on special condi-
tions of the object, such as how it performs remotely or which access methods best work with
implementation.

2.5 Working with Objects

Working with OpenOffice.org API objects involves the following:

First we will learn the UNO concepts of objects, interfaces, services, attributes, and properties,
and we will get acquainted with UNO's method of using them.

After that, we will work with a OpenOffice.org document for the first time, and give some hints
for the usage of the most common types in OpenOffice.org API.

Finally we will introduce the common interfaces that allow you to work with text, tables and
drawings across all OpenOffice.org document types.

OpenOffice.org 2.0 Developer's Guide « May 2005

2.5.1 Objects, Interfaces, and Services

Objects

In UNO, an object is a software artifact that has methods that you can call and attributes that you
can get and set. Exactly what methods and attributes an object offers is specified by the set of inter-
faces it supports.

Interfaces

An interface specifies a set of attributes and methods that together define one single aspect of an
object. For instance, the interface com.sun.star.resource.XResourceBundle

module com { module sun { module star { module resource ({
interface XResourceBundle: com::sun::star::conainer::XNameAccess {
[attribute] XResourceBundle Parent;
com::sun::star::lang::Locale getLocale();
any getDirectElement([in] string key);

}i
I A A

specifies the attribute Parent and the methods getlLocale () and getDirectElement (). To allow
for reuse of such interface specifications, an interface can inherit one or more other interfaces (as,
for example, XResourceBundle inherits all the attributes and methods of
com.sun.star.container.XNameAccess). Multiple inheritance, the ability to inherit more than
one interface, is new in OpenOffice.org 2.0.

Strictly speaking, interface attributes are not needed in UNO. Each attribute could also be
expressed as a combination of one method to get the attribute’s value, and another method to set it
(or just one method to get the value for a read-only attribute). However, there are at least two good
reasons for the inclusion of interface attributes in UNO: First, the need for such combinations of
getting and setting a value seems to be widespread enough to warrant extra support. Second, with
attributes, a designer of an interface can better express nuances among the different features of an
object. Attributes can be used for those features that are not considered integral or structural parts
of an object, while explicit methods are reserved to access the core features.

Historically, a UNO object typically supported a set of many independent interfaces, corre-
sponding to its many different aspects. With multiple-inheritance interfaces, there is less need for
this, as an object may now support just one interface that inherits from all the other interfaces that
make up the object’s various aspects.

Services

Historically, the term “service” has been used with an unclear meaning in UNO. Starting with
OpenOffice.org 2.0, the underlying concepts have been made cleaner. Unfortunately, this leaves
two different meanings for the term “service” within UNO. In the following, we will use the term
“new-style service” to denote an entity that conforms to the clarified, OpenOffice.org-2.0 service
concept, while we use “old-style service” to denote an entity that only conforms to the historical,
more vague concept. To make matters even more complicated, the term “service” is often used
with still different meanings in contexts outside UNO.

Although technically there should no longer be any need for old-style services, the OpenOffice.org
API still uses them extensively, to remain backwards compatible. Therefore, be prepared to
encounter uses of both service concepts in parallel when working with the OpenOffice.org API.

A new-style service is of the form

39

40

module com { module sun { module star { module bridge {

service UnoUrlResolver: XUnoUrlResolver;
Yiobiods o}
and specifies that objects that support a certain interface (for example,
com.sun.star.bridge.XUnoUrlResolver) will be available under a certain service name (e.g.,
"com.sun.star.bridge.UnoUrlResolver™) at a component context’s service manager. (Formally,
new-style services are called “single-interface—based services.”)

The various UNO language bindings offer special constructs to easily obtain instances of such new-
style services, given a suitable component context; see 3.4.1 Professional UNO - UNO Language Bind-
ings - Java Language Binding - Type Mappings - Mapping of Services and 3.4.2 Professional UNO - UNO
Language Bindings - C++ Language Binding - Type Mappings - Mapping of Services.

An old-style service (formally called an “accumulation-based service”) is of the form

module com { module sun { module star { module frame ({
service Desktop ({

service Frame;

interface XDesktop;

interface XComponentLoader;

interface com::sun::star::document::XEventBroadcaster;

bi
[A A
and is used to specify any of the following:

. The general contract is, that if an object is documented to support a certain old-style service,
then you can expect that object to support all interfaces exported by the service itself and any
inherited services. For example, the method com.sun.star.frame.XFrames:queryFrames
returns a sequence of objects that should all support the old-style service
com.sun.star.frame.Frame, and thus all the interfaces exported by Frame.

- Additionally, an old-style service may specify one or more properties, as in

module com { module sun { module star { module frame {
service Frame {

interface com::sun::star::frame: :XFrame;

interface com::sun::star::frame::XDispatchProvider;

/]

[property] string Title;

[property, optional] XDispatchRecorderSupplier RecorderSupplier;

/]
}i
Yiooli o}
Properties, which are explained in detail in the following section, are similar to interface attri-
butes, in that they describe additional features of an object. The main difference is that interface
attributes can be accessed directly, while the properties of an old-style service are typically
accessed via generic interfaces like com.sun.star.beans.XPropertySet. Often, interface attri-
butes are used to represent integral features of an object, while properties represent additional,

more volatile features.

Some old-style services are intended to be available at a component context’s service manager.
For example, the service com.sun.star.frame.Desktop can be instantiated at a component
context’s service manager under its service name "com.sun.star.frame.Desktop". (The
problem is that you cannot tell whether a given old-style service is intended to be available at a
component context; using a new-style service instead makes that intent explicit.)

Other old-style services are designed as generic super-services that are inherited by other ser-
vices. For example, the service com.sun.star.document.OfficeDocument serves as a generic
base for all different sorts of concrete document services, like
com.sun.star.text.TextDocument and com.sun.star.drawing.DrawingDocument. (Mul-
tiple-inheritance interfaces are now the preferred mechanism to express such generic base ser-
vices.)

Yet other old-style services only list properties, and do not export any interfaces at all. Instead
of specifying the interfaces supported by certain objects, as the other kinds of old-style services

OpenOffice.org 2.0 Developer's Guide « May 2005

do, such services are used to document a set of related properties. For example, the service
com.sun.star.document.MediaDescriptor lists all the properties that can be passed to
com.sun.star.frame.XComponentLoader:loadComponentFromURL.

A property is a feature of an object which is typically not considered an integral or structural part of
the object and therefore is handled through generic getPropertyValue () /setPropertyValue ()
methods instead of specialized get methods, such as getPrinter (). Old-style services offer a spe-
cial syntax to list all the properties of an object. An object containing properties only has to support
the com.sun.star.beans.XPropertySet interface to be prepared to handle all kinds of properties.
Typical examples are properties for character or paragraph formatting. With properties, you can
set multiple features of an object through a single call to setPropertyvalues (), which greatly
improves the remote performance. For instance, paragraphs support the setPropertyValues ()
method through their com.sun.star.beans.XMultiPropertySet interface.

2.5.2 Using Services

The concepts of interfaces and services were introduced for the following reasons:

Interfaces and services separate specification from implementation
The specification of an interface or service is abstract, that is, it does not define how objects
supporting a certain functionality do this internally. Through the abstract specification of the
OpenOffice.org API, it is possible to pull the implementation out from under the API and install
a different implementation if required.

Service names allow to create instances by specification name, not by class names
In Java or C++ you use the new operator to create a class instance. This approach is restricted:
the class you get is hard-coded. You cannot later on exchange it by another class without
editing the code. The concept of services solves this. The central object factory in
OpenOffice.org, the global service manager, is asked to create an object that can be used for a
certain purpose without defining its internal implementation. This is possible, because a service
can be ordered from the factory by its service name and the factory decides which service imple-
mentation it returns. Which implementation you get makes no difference, you only use the
well-defined interface of the service.

Multiple-inheritance interfaces make fine-grained interfaces manageable
Abstract interfaces are more reusable if they are fine-grained, i.e., if they are small and describe
only one aspect of an object, not several aspects. But then you need many of them to describe a
useful object. Multiple-inheritance interfaces allow to have fine-grained interfaces on the one
hand and to manage them easily by forging them into a collection. Since it is quite probable that
objects in an office environment will share many aspects, this fine granularity allows the inter-
faces to be reused and thus to get objects that behave consistently. For instance, it was possible
to realize a unified way to handle text, no matter if you are dealing with body text, text frames,
header or footer text, footnotes, table cells or text in drawing shapes. It was not necessary to
define separate interfaces for all of these purposes.

Let us consider the old-style service com.sun.star.text.TextDocument in UML notation. The
UML chart shown in Illustration 2.2 depicts the mandatory interfaces of a TextDocument service.
These interfaces express the basic aspects of a text document in OpenOffice.org. It contains text, it
is searchable and refreshable. It is a model with URL and controller, and it is modifiable, printable
and storable. The UML chart shows how this is specified in the API.

41

com.sun.star.view.XPrintable

getPrinter
setPrinter
print

com.sun.star.frame.XStorable

hasLocation
getlocation
isReadOnly
store
storeAsUrl
storeToUrl
com.sun.star.document.
OfficeDocument O com.sun.star.frame.XModel

<<service>>

attachResource
getURL

getArgs
connectController
disconnectController
lockControllers
unlockControllers
hasControllersLocked
setCurrentController
getCurrentController

O com.sun.star.util.XModifiable

isModified
setModified

O com.sun.star.text.XTextDocument

getText
reformat

com.sun.star.util.XSearchable
com.sun.star.text. O

TextDocument createSearchDescriptor
<<service>> findAll
findFirst
findNext

O com.sun.star.util.XRefreshable

refresh
addRefreshListener
removeRefreshListener

Illustration 2.2: Text Document

On the left of Illustration 2.2, the services com.sun.star.text.TextDocument and
com.sun.star.document.OfficeDocument are shown. Every TextDocument must include these
services by definition.

On the right of Illustration 2.2, you find the interfaces, that the services must export. Their method
compartments list the methods contained in the various interfaces. In the OpenOffice.org API, all
interface names have to start with an Xto be distinguishable from the names of other entities.

Every TextDocument object must support three interfaces: XTextDocument, XSearchable, and
XRefreshable. In addition, because a TextDocument is always an OfficeDocument, it must also
support the interfaces xPrintable, XStorable, XModifiable and XModel. The methods contained
in these interfaces cover these aspects: printing, storing, modification and model handling.

42 OpenOffice.org 2.0 Developer's Guide « May 2005

Note that the interfaces shown in Illustration 2.2 are only the mandatory interfaces of a TextDocu-
ment. A TextDocument has optional properties and interfaces, among them the properties Charac-
terCount, ParagraphCount and WordCount and the XPropertySet interface which must be sup-
ported if properties are present at all. The current implementation of the TextDocument service in
OpenOffice.org does not only support these interfaces, but all optional interfaces as well. The
usage of a TextDocument is described thoroughly in 7 Text Documents.

Using Interfaces

The fact that every UNO object must be accessed through its interfaces has an effect in languages
like Java and C++, where the compiler needs the correct type of an object reference before you can
call a method from it. In Java or C++, you normally just cast an object before you access an inter-
face it implements. When working with UNO objects this is different: You must ask the UNO envi-
ronment to get the appropriate reference for you whenever you want to access methods of an inter-
face which your object supports, but your compiler does not yet know about. Only then you can
cast it safely.

The Java UNO environment has a method queryInterface () for this purpose. It looks compli-
cated at first sight, but once you understand that queryInterface () is about safe casting of UNO
types across process boundaries, you will soon get used to it. Take a look to the second example
FirstLoadComponent (FirstSteps/FirstLoadComponent.java) where a new Desktop object is cre-
ated and afterwards the queryInterface () method is used to get the XComponentLoader inter-
face.

Object desktop = xRemoteServiceManager.createInstanceWithContext (
"com.sun.star.frame.Desktop", xRemoteContext) ;

XComponentLoader xComponentLoader = (XComponentLoader)

UnoRuntime.queryInterface (XComponentLoader.class, desktop);
(0]
We asked the service manager to create a com.sun.star.frame.Desktop using its factory method
createInstanceWithContext (). This method is defined to return a Java Object type, which
should not surprise you—after all the factory must be able to return any type:

java.lang.Object createInstanceWithContext (String serviceName, XComponentContext context)
The object we receive is a com.sun.star.frame.Desktop service.

The following figure is a simplified specification in UML notation showing the relation to the
com.sun.star.frame.Frame service and the supported interfaces.The point is, while we know that
the object we ordered at the factory is a DesktopUnoUrIResolver and exports among other inter-
faces the interface XComponentLoader, the compiler does not. Therefore, we have to use the UNO
runtime environment to ask or query for the interface XComponentLoader, since we want to use the
loadComponentFromURL () method on this interface. The method queryInterface () makes sure
we get a reference that can be cast to the needed interface type, no matter if the target object is a
local or a remote object. There are two queryInterface definitions in the Java UNO language
binding:

java.lang.Object UnoRuntime.queryInterface (java.lang.Class targetInterface, Object sourceObject)
java.lang.Object UnoRuntime.queryInterface (com.sun.star.uno.Type targetInterface, Object sourceObject)
Since UnoRuntime.queryInterface () is specified to return a java.lang.Object just like the factory
method createlInstanceWithContext (), we still must explicitly cast our interface reference to the
needed type. The difference is that after queryInterface () we can safely cast the object to our
interface type and, most important, that the reference will now work even with an object in another
process. Here is the queryInterface () call, explained step by step:

XComponentLoader xComponentLoader = (XComponentLoader)
UnoRuntime.queryInterface (XComponentLoader.class, desktop);

43

44

XComponentLoader is the interface we want to use, so we define a XComponentLoader variable
named xComponentLaoder (lower x) to store the interface we expect from queryInterface.

Then we query our desktop object for the XComponentLoader interface, passing in
XComponentLoader.class as target interface and desktop as source object. Finally we cast the
outcome to XComponentLoader and assign the resulting reference to our variable xComponent-
Loader.

If the source object does not support the interface we are querying for, queryInterface () will
return null.

In Java, this call to queryInterface () is necessary whenever you have a reference to an object
which is known to support an interface that you need, but you do not have the proper reference
type yet. Fortunately, you are not only allowed to queryInterface () from java.lang.Object
source types, but you may also query an interface from another interface reference, like this:

// loading a blank spreadsheet document gives us its XComponent interface:

XComponent xComponent xComponentLoader.loadComponent FromURL (
"private:factory/scalc", " blank", 0, loadProps);

// now we query the interface XSpreadsheetDocument from xComponent
XSpreadsheetDocument xSpreadsheetDocument = (XSpreadsheetDocument)UnoRuntime.queryInterface (
XSpreadsheetDocument.class, xComponent) ;

Furthermore, if a method is defined in such a way that it already returns an interface type, you do
not need to query the interface, but you can use its methods right away. In the snippet above, the
method loadComponentFromURL is specified to return an com.sun.star.lang.XComponent inter-
face, so you may call the xComponent methods addEventListener () and

removeEventListener () directly at the xComponent variable, if you want to be notified that the
document is being closed.

The corresponding step in C++ is done by a Reference<> template that takes the source instance
as parameter:

// instantiate a sample service with the servicemanager.
Reference< XInterface > rInstance =
rServiceManager->createInstanceWithContext (
OUString::createFromAscii ("com.sun.star.frame.Desktop"),
rComponentContext);

// Query for the XComponentLoader interface
Reference< XComponentLoader > rComponentLoader (rInstance, UNO_QUERY) ;

In OpenOffice.org Basic, querying for interfaces is not necessary, the Basic runtime engine takes
care about that internally.

With the proliferation of multiple-inheritance interfaces in the OpenOffice.org API, there will be
less of a demand to explicitly query for specific interfaces in Java or C++. For example, with the
hypothetical interfaces

interface XBasel ({
void funl () ;

bi

interface XBase2 ({
void fun2();

bi

interface XBoth { // inherits from both XBasel and XBase2
interface XBasel;
interface XBase2;

bi

interface XFactory {
XBoth getBoth () ;

}i

you can directly call both funl () and fun2 () on a reference obtained through
XFactory.getBoth (), without querying for either xBasel or XBase?2.

OpenOffice.org 2.0 Developer's Guide « May 2005

Using Properties

An object must offer its properties through interfaces that allow you to work with properties. The
most basic form of these interfaces is the interface com.sun.star.beans.XPropertySet. There are
other interfaces for properties, such as com.sun.star.beans.xXMultiPropertySet, that gets and
sets a multitude of properties with a single method call. The xPropertySet is always supported
when properties are present in a service.

In XxPropertySet, two methods carry out the property access, which are defined in Java as follows:

void setPropertyValue (String propertyName, Object propertyValue)
Object getPropertyValue (String propertyName)

In the FirstLoadComponent example, the xPropertySet interface was used to set the CellStyle
property at a cell object. The cell object was a com.sun.star.sheet.SheetCell and therefore
supports also the com.sun.star.table.CellProperties service which had a property cell-
Style. The following code explains how this property was set:

// query the XPropertySet interface from cell object
XPropertySet xCellProps = (XPropertySet)UnoRuntime.queryInterface (XPropertySet.class, xCell);

// set the CellStyle property
xCellProps.setPropertyValue ("CellStyle", "Result");

You are now ready to start working with a OpenOffice.org document.

2.5.3 Example: Working with a Spreadsheet Document

In this example, we will ask the remote service manager to give us the remote Desktop object and
use its loadComponentFromURL () method to create a new spreadsheet document. From the docu-
ment we get its sheets container where we insert and access a new sheet by name. In the new sheet,
we enter values into Al and A2 and summarize them in A3. The cell style of the summarizing cell
gets the cell style Result, so that it appears in italics, bold and underlined. Finally, we make our
new sheet the active sheet, so that the user can see it.

Add these import lines to the FirstConnection example above:
(FirstSteps/FirstLoadComponent.java)

import com.sun.star.beans.PropertyValue;

import com.sun.star.lang.XComponent;

import com.sun.star.sheet.XSpreadsheetDocument;
import com.sun.star.sheet.XSpreadsheets;

import com.sun.star.sheet.XSpreadsheet;

import com.sun.star.sheet.XSpreadsheetView;
import com.sun.star.table.XCell;

import com.sun.star.frame.XModel;

import com.sun.star.frame.XController;

import com.sun.star.frame.XComponentLoader;

Edit the useConnection method as follows:

protected void useConnection () throws java.lang.Exception {
try {
// get the remote office component context
xRemoteContext = com.sun.star.comp.helper.Bootstrap.bootstrap () ;
System.out.println("Connected to a running office ...");

xRemoteServiceManager = xRemoteContext.getServiceManager () ;
}
catch(Exception e) {

e.printStackTrace () ;

System.exit (1) ;
}

try {
// get the Desktop, we need its XComponentLoader interface to load a new document

Object desktop = xRemoteServiceManager.createInstanceWithContext (
"com.sun.star.frame.Desktop", xRemoteContext) ;

45

46

// query the XComponentLoader interface from the desktop
XComponentLoader xComponentLoader = (XComponentLoader)UnoRuntime.queryInterface (
XComponentLoader.class, desktop);

// create empty array of PropertyValue structs, needed for loadComponentFromURL
PropertyValue[] loadProps = new PropertyValue[O0];

// load new calc file
XComponent xSpreadsheetComponent = xComponentLoader.loadComponentFromURL (
"private:factory/scalc", " blank", 0, loadProps);

// query its XSpreadsheetDocument interface, we want to use getSheets()
XSpreadsheetDocument xSpreadsheetDocument = (XSpreadsheetDocument)UnoRuntime.queryInterface (
XSpreadsheetDocument.class, xSpreadsheetComponent);

// use getSheets to get spreadsheets container
XSpreadsheets xSpreadsheets = xSpreadsheetDocument.getSheets () ;

//insert new sheet at position 0 and get it by name, then query its XSpreadsheet interface
xSpreadsheets.insertNewByName ("MySheet", (short)O0);
Object sheet = xSpreadsheets.getByName ("MySheet") ;
XSpreadsheet xSpreadsheet = (XSpreadsheet)UnoRuntime.queryInterface (
XSpreadsheet.class, sheet);

// use XSpreadsheet interface to get the cell Al at position 0,0 and enter 21 as value
XCell xCell = xSpreadsheet.getCellByPosition (0, O0);
xCell.setValue (21);

// enter another value into the cell A2 at position 0,1
xCell = xSpreadsheet.getCellByPosition(0, 1);
xCell.setValue (21) ;

// sum up the two cells
xCell = xSpreadsheet.getCellByPosition (0, 2);
xCell.setFormula ("=sum(A1:A2)");

// we want to access the cell property CellStyle, so query the cell's XPropertySet interface
XPropertySet xCellProps = (XPropertySet)UnoRuntime.queryInterface (
XPropertySet.class, xCell);

// assign the cell style "Result" to our formula, which is available out of the box
xCellProps.setPropertyValue ("CellStyle", "Result");

// we want to make our new sheet the current sheet, so we need to ask the model
// for the controller: first query the XModel interface from our spreadsheet component
XModel xSpreadsheetModel = (XModel)UnoRuntime.queryInterface (

XModel.class, xSpreadsheetComponent) ;

// then get the current controller from the model
XController xSpreadsheetController = xSpreadsheetModel.getCurrentController () ;

// get the XSpreadsheetView interface from the controller, we want to call its method

// setActiveSheet

XSpreadsheetView xSpreadsheetView = (XSpreadsheetView)UnoRuntime.queryInterface (
XSpreadsheetView.class, xSpreadsheetController);

// make our newly inserted sheet the active sheet using setActiveSheet
xSpreadsheetView.setActiveSheet (xSpreadsheet) ;

}

catch(com.sun.star.lang.DisposedException e) { //works from Patch 1
xRemoteContext = null;
throw e;

}

Alternatively, you can add FirstLoadComponent.java from the samples directory to your current
project, it contains the changes shown above.

2.5.4 Common Types

Until now, literals and common Java types for method parameters and return values have been
used as if the OpenOffice.org API was made for Java. However, it is important to understand that
UNO is designed to be language independent and therefore has its own set of types which have to
be mapped to the proper types for your language binding. The type mappings are briefly
described in this section. Refer to 3 Professional UNO for detailed information about type map -

pings.

OpenOffice.org 2.0 Developer's Guide « May 2005

Basic Types

The basic UNO types (where the term “basic” has nothing to do with OpenOffice.org Basic) occur
as members of structs, as method return types or method parameters. The following table shows
the basic UNO types and, if available, their exact mappings to Java, C++, and OpenOffice.org Basic

types.

UNO Type description Java C++ Basic
empty type, used only as
void method return type and void void -
in any
boolean Boolean type; true and boolean sal Bool Boolean
false -
byte signed 8-bit integer type byte sal Int8 Integer
short signed 16-bit integer type | short sal Intleé Integer
unsigned unsigned 16-bit integer _ sal uIntlé _
short type (deprecated) -
long signed 32-bit integer type int sal Int32 Long
unsigned | unsigned 32-bit integer _ sal uInt3? N
long type (deprecated) -
hyper signed 64-bit integer type | long sal Int64 -
unsigned unsigned 64-bit integer sal uIntéd _
hyper type (deprecated) -
IEC 60559 single preci- . . .
float . . . float f1 f Single
sion floating point type oat (if appropriate) g
double IEC 60559 double preci- double double (if appropriate) Double

sion floating point type

16-bit Unicode character
char type (more precisely: char sal Unicode -
UTEF-16 code units)-

There are special conditions for types that do not have an exact mapping in this table. Check for
details about these types in the corresponding sections about type mappings in 3.4 Professional
UNO - UNO Language Bindings.

Strings

UNO considers strings to be simple types, but since they need special treatment in some environ-
ments, we discuss them separately here.

UNO Description Java C++ Basic

Unicode string type
string (more precisely: strings
of Unicode scalar values)

java.lang.-

String rtl::0UString String

In Java, use UNO strings as if they were native java.lang.String objects.

In C++, native char strings must be converted to UNO Unicode strings by means of SAL conver-
sion functions, usually the function createFromAscii () in the rtl::0UString class:

//C++

47

48

static OUString createFromAscii(const sal Char * value) throw();

In Basic, Basic strings are mapped to UNO strings transparently.

Enum Types and Groups of Constants

The OpenOffice.org API uses many enumeration types (called enums) and groups of constants
(called constant groups). Enums are used to list every plausible value in a certain context. The con-
stant groups define possible values for properties, parameters, return values and struct members.

For example, there is an enum com.sun.star.table.CellVertJustify that describes the possible
values for the vertical adjustment of table cell content. The vertical adjustment of table cells is
determined by their property com.sun.star.table.CellProperties:VertJustify. The possible
values for this property are, according to CellvVertJustify, the values STANDARD, TOP, CENTER and
BOTTOM.

// adjust a cell content to the upper cell border

// The service com.sun.star.table.Cell includes the service com.sun.star.table.CellProperties

// and therefore has a property VertJustify that controls the vertical cell adjustment

// we have to use the XPropertySet interface of our Cell to set it

xCellProps.setPropertyValue ("VertJustify", com.sun.star.table.CellVertJustify.TOP);

OpenOffice.org Basic understands enumeration types and constant groups. Their usage is straight-
forward:

'OpenOffice.org Basic
oCellProps.VertJustify = com.sun.star.table.CellVertJustify.TOP

In C++ enums and constant groups are used with the scope operator ::
//CH+

rCellProps->setPropertyValue (OUString: :createFromAscii ("VertJustify"),
::com::sun::star::table::CellVertJustify.TOP) ;

2.5.5 Struct

Structs in the OpenOffice.org API are used to create compounds of other UNO types. They corre-
spond to C structs or Java classes consisting of public member variables only.

While structs do not encapsulate data, they are easier to transport as a whole, instead of marshal-
ling get () and set () calls back and forth. In particular, this has advantages for remote communi -
cation.

You gain access to struct members through the . (dot) operator as in
aProperty.Name = "ReadOnly";
In Java, C++ und OpenOffice.org Basic, the keyword new instantiates structs. In OLE automation,

use com.sun.star.reflection.CoreReflection to get a UNO struct. Do not use the service
manager to create structs.

//In Java:
com.sun.star.beans.PropertyValue aProperty = new com.sun.star.beans.PropertyValue () ;

'In StarBasic
Dim aProperty as new com.sun.star.beans.PropertyValue

OpenOffice.org 2.0 Developer's Guide « May 2005

2.5.6 Any

The OpenOffice.org API frequently uses an any type, which is the counterpart of the variant type
known from other environments. The any type holds one arbitrary UNO type. The any type is
especially used in generic UNO interfaces.

Examples for the occurrence of any are the method parameters and return values of the following,
frequently used methods:

Interface returning an any type taking an any type
XPropertySet any getPropertyValue (string void setPropertyValue (any value)
propertyName)
XNameContainer any getByName (string name) void void
replaceByName (string insertByName (string
name, any element) name, any element)
XIndexContainer any getByIndex (long index) void void
replaceByIndex (long insertByIndex (long
index, any element) index, any element)
XEnumeration any nextElement () -

Furthermore, the any type occurs in the com.sun.star.beans.PropertyValue struct.

com.sun.star.beans.
PropertyValue

<<struct>>

string Name
any Value

Illustration 2.3:
PropertyValue

This struct has two member variables, Name and Value, and is ubiquitous in sets of Property-
Value structs, where every PropertyValue is a name-value pair that describes a property by name
and value. If you need to set the value of such a PropertyValue struct, you must assign an any
type, and you must be able to interpret the contained any, if you are reading from a Property-
Value. It depends on your language how this is done.

In Java, the any type is mapped to java.lang.Object, but there is also a special Java class
com.sun.star.uno.Any, mainly used in those cases where a plain Object would be ambiguous.
There are two simple rules of thumb to follow:

When you are supposed to pass in an any value, always pass in a java.lang.Object or a Java
UNO object.

For instance, if you use setPropertyValue () to set a property that has a non-interface type in the
target object, you must pass in a java.lang.Object for the new value. If the new value is of a
primitive type in Java, use the corresponding Object type for the primitive type:

xCellProps.setPropertyValue ("CharWeight", new Double (200.0)) ;

Another example would be a PropertyValue struct you want to use for loadComponentFromURL:
com.sun.star.beans.PropertyValue aProperty = new com.sun.star.beans.PropertyValue () ;

aProperty.Name = "ReadOnly";
aProperty.Value = Boolean.TRUE;

When you receive an any instance, always use the com.sun.star.uno.AnyConverter to retrieve its
value.

49

50

The AnyConverter requires a closer look. For instance, if you want to get a property which con-
tains a primitive Java type, you must be aware that getPropertyValue () returns a
java.lang.Object containing your primitive type wrapped in an any value. The
com.sun.star.uno.AnyConverter is a converter for such objects. Actually it can do more than
just conversion, you can find its specification in the Java UNO reference. The following list sums
up the conversion functions in the AnyConverter:

static java.lang.Object toArray(java.lang.Object object)

static boolean toBoolean (java.lang.Object object)

static byte toByte(java.lang.Object object)

static char toChar(java.lang.Object object)

static double toDouble (java.lang.Object object)

static float toFloat(java.lang.Object object)

static int toInt(java.lang.Object object)

static long tolong(java.lang.Object object)

static java.lang.Object toObject(Class clazz, java.lang.Object object)
static java.lang.Object toObject (Type type, Jjava.lang.Object object)
static short toShort(java.lang.Object object)

static java.lang.String toString(java.lang.Object object)

static Type toType (java.lang.Object object)

static int toUnsignedInt (java.lang.Object object)

static long toUnsignedLong(java.lang.Object object)

static short toUnsignedShort(java.lang.Object object)

Its usage is straightforward:

import com.sun.star.uno.AnyConverter;

long cellColor = AnyConverter.tolLong (xCellProps.getPropertyValue ("CharColoxr"));

For convenience, for interface types you can directly use UnoRuntime.queryInterface () without
first calling AnyConverter.getObject ():

import com.sun.star.uno.AnyConverter;

import com.sun.star.uno.UnoRuntime;
Object ranges = xSpreadsheet.getPropertyValue ("NamedRanges") ;

XNamedRanges rangesl = (XNamedRanges) UnoRuntime.queryInterface (
XNamedRanges.class, AnyConverter.toObject (XNamedRanges.class, r));
XNamedRanges ranges2 = (XNamedRanges) UnoRuntime.queryInterface (

XNamedRanges.class, r);

In OpenOffice.org Basic, the any type becomes a Variant:

'OpenOffice.org Basic
Dim cellColor as Variant
cellColor = oCellProps.CharColor

In C++, there are special operators for the any type:

//C++ has >>= and <<= for Any (the pointed brackets are always left)

sal Int32 cellColor;

Any_any;

any = rCellProps->getPropertyValue (OUString: :createFromAscii("CharColor"));
// extract the value from any

any >>= cellColor;

2.5.7 Sequence

A sequence is a homogeneous collection of values of one UNO type with a variable number of
elements. Sequences map to arrays in most current language bindings. Although such collections
are sometimes implemented as objects with element access methods in UNO (e.g., via the
com.sun.star.container.XEnumeration interface), there is also the sequence type, to be used
where remote performance matters. Sequences are always written with pointed brackets in the API
reference:

// a sequence of strings is notated as follows in the API reference

sequence< string > aStringSequence;

In Java, you treat sequences as arrays. (But do not use null for empty sequences, use arrays cre-
ated via new and with a length of zero instead.) Furthermore, keep in mind that you only create an
array of references when creating an array of Java objects, the actual objects are not allocated.

OpenOffice.org 2.0 Developer's Guide « May 2005

Therefore, you must use new to create the array itself, then you must again use new for every single
object and assign the new objects to the array.

An empty sequence of PropertyValue structs is frequently needed for 1oadComponentFromURL:

// create an empty array of PropertyValue structs for loadComponentFromURL

PropertyValue[] emptyProps = new PropertyValue[O0];

A sequence of PropertyValue structs is needed to use loading parameters with loadComponent-
FromURL (). The possible parameter values for 1oadComponentFromURL () and the
com.sun.star.frame.XStorable interface can be found in the service
com.sun.star.document.MediaDescriptor

// create an array with one PropertyValue struct for loadComponentFromURL, it contains references only
PropertyValue[] loadProps = new PropertyValue[l];

// instantiate PropertyValue struct and set its member fields
PropertyValue asTemplate = new PropertyValue();
asTemplate.Name = "AsTemplate";

asTemplate.Value = Boolean.TRUE;

// assign PropertyValue struct to first element in our array of references to PropertyValue structs
loadProps[0] = asTemplate;

// load calc file as template

XComponent xSpreadsheetComponent = xComponentLoader.loadComponentFromURL (
"file:///X:/share/samples/english/spreadsheets/OfficeSharingAssoc.sxc",
"_blank", 0, loadProps);

In OpenOffice.org Basic, a simple Dim creates an empty array.

'OpenOffice.org Basic
Dim loadProps () 'empty array

A sequence of structs is created using new together with Dim.

'OpenOffice.org Basic

Dim loadProps (0) as new com.sun.star.beans.PropertyValue 'one PropertyValue

In C++, there is a class template for sequences. An empty sequence can be created by omitting the
number of elements required.

//CH++
Sequence< ::com::sun::star::beans::PropertyValue > loadProperties; // empty sequence

If you pass a number of elements, you get an array of the requested length.

//CH++

Sequence< ::com::sun::star::beans::PropertyValue > loadProps(1);
// the structs are default constructed

loadProps[0] .Name = OUString::createFromAscii("AsTemplate");
loadProps[0] .Handle <<= true;

Reference< XComponent > rComponent = rComponentLoader->loadComponentFromURL (
OUString::createFromAscii ("private:factory/swriter"),
OUString::createFromAscii ("_blank"),

0,
loadProps) ;

2.5.8 Element Access

We have already seen in section 2.4 First Steps - How to get Objects in OpenOlffice.org that sets of
objects can also be provided through element access methods. The three most important kinds of
element access interfaces are com.sun.star.container.XNameContainer,
com.sun.star.container.XIndexContainer and com.sun.star.container.XEnumeration

The three element access interfaces are examples of how the fine-grained interfaces of the
OpenOffice.org API allow consistent object design.

All three interfaces inherit from XElementAccess, i.e., they include the methods:

type getElementType ()
boolean hasElements ()

51

52

to find out basic information about the set of elements. The method hasElements () answers the
question if a set contains elements at all, and which type a set contains. In Java and C++, you can

get information about a UNO type through com.sun.star.uno.Type, cf. the Java UNO and the
C++ UNO reference.

The com.sun.star.container.XIndexContainer and

com.sun.star.container.XNameContainer interface have a parallel design. Consider both inter-
faces in UML notation.

com.sun.star.container. com.sun.star.container.
XElementAccess XElementAccess
<<interface>> <<interface>>
type getElementType () type getElementType ()
boolean hasElements () boolean hasElements ()
com.sun.star.container. com.sun.star.container.
XindexAccess XNameAccess
<<interface>> <<interface>>
any getBylndex (long index) any getByName (string name)
long getCount () sequence <sting> getElementNames ()
boolean hasByName (string name)

com.sun.star.container. com.sun.star.container.
XIndexReplace XNameReplace
<<interface>> <<interface>>
void replaceByIndex void replaceBysName
(long index, any element) (string name, any element)

AN

com.sun.star.container. com.sun.star.container.
XindexContainer XNameContainer
<<interface>> <<interface>>
void insertBylndex void insertByName
(long index, any element) (string name, any element)
void removeByIndex (long index) void removeByName (string name)

Hlustration 2.4: Indexed and Named Container

The XxIndexAccess/XNameAccess interfaces are about gefting an element. The
XIndexReplace/xXNameReplace interfaces allow you to replace existing elements without changing
the number of elements in the set, whereas the XIndexContainer/XNameContainer interfaces
allow you to increase and decrease the number of elements by inserting and removing elements.

Many sets of named or indexed objects do not support the whole inheritance hierarchy of XIndex-
Container or XNameContainer, because the capabilities added by every subclass are not always
logical for any set of elements.

OpenOffice.org 2.0 Developer's Guide « May 2005

The xEumerationAccess interface works differently from named and indexed containers below
the XxElementAccess interface. XxEnumerationAccess does not provide single elements like xName-
Access and XIndexAccess, but it creates an enumeration of objects which has methods to go to the
next element as long as there are more elements.

com.sun.star.container.
XElementAccess

<<interface>>

type getElementType ()
boolean hasElements ()

com.sun.star.container.
XEnumerationAccess
<<interface>>

com.sun.star.container.XEnumeration
createEnumeration ()

\/
com.sun.star.container.
XEnumeration

<<interface>>

createEnumeration()

boolean hasMoreElements ()
any nextElement ()

Illustration 2.5: Enumerated
Container

Sets of objects sometimes support all element access methods, some also support only name, index,
or enumeration access. Always look up the various types in the API reference to see which access
methods are available.

For instance, the method getSheets () at the interface
com.sun.star.sheet.XSpreadsheetDocument is specified to return a
com.sun.star.sheet.XSpreadsheets interface inherited from xNameContainer. In addition, the
API reference tells you that the provided object supports the com.sun.star.sheet.Spreadsheets
service, which defines additional element access interfaces besides xSpreadsheets.

Examples that show how to work with xNameAccess, XxIndexAccess, and XEnumerationAccess
are provided below.

Name Access

The basic interface which hands out elements by name is the

com.sun.star.container.xXNameAccess interface. It has three methods:
any getByName([in] string name)

sequence< string > getElementNames ()
boolean hasByName([in] string name)

53

54

In the FirstLoadComponent example above, the method getSheets () returned a
com.sun.star.sheet.XSpreadsheets interface, which inherits from xNameAccess. Therefore,
you could use getByName () to obtain the sheet "MySheet'by name from the xSpreadsheets con-
tainer:

XSpreadsheets xSpreadsheets = xSpreadsheetDocument.getSheets () ;

Object sheet = xSpreadsheets.getByName ("MySheet") ;

XSpreadsheet xSpreadsheet = (XSpreadsheet)UnoRuntime.queryInterface (

XSpreadsheet.class, sheet);

// use XSpreadsheet interface to get the cell Al at position 0,0 and enter 42 as value
XCell xCell = xSpreadsheet.getCellByPosition (0, 0);

Since getByName () returns an any, you have to use AnyConverter.toObject () and/or
UnoRuntime.queryInterface () before you can call methods at the spreadsheet object.

Index Access

The interface which hands out elements by index is the com.sun.star.container.XIndexAccess
interface. It has two methods:

any getByIndex([in] long index)
long getCount ()

The FirstLoadComponent example allows to demonstrate XIndexAccess. The API reference tells
us that the service returned by getSheets () iSa com.sun.star.sheet.Spreadsheet service and
supports not only the interface com.sun.star.sheet.xSpreadsheets, but XxIndexAccess as well.
Therefore, the sheets could have been accessed by index and not just by name by performing a
query for the xIndexAccess interface from our xSpreadsheets variable:

XIndexAccess xSheetIndexAccess = (XIndexAccess)UnoRuntime.queryInterface (
XIndexAccess.class, xSpreadsheets);

Object sheet = XSheetIndexAccess.getByIndex (0);

Enumeration Access

The interface com.sun.star.container.XEnumerationAccess creates enumerations that allow
traveling across a set of objects. It has one method:

com.sun.star.container.XEnumeration createEnumeration ()
The enumeration object gained from createEnumeration () supports the interface

com.sun.star.container.XEnumeration. With this interface we can keep pulling elements out of
the enumeration as long as it has more elements. xEnumeration supplies the methods:

boolean hasMoreElements (
any nextElement (

which are meant to build loops such as:
while (xCells.hasMoreElements()) {
Object cell = xCells.nextElement();

// do something with cell
}

For example, in spreadsheets you have the opportunity to find out which cells contain formulas.
The resulting set of cells is provided as xEnumerationAccess.

The interface that queries for cells with formulas is com.sun.star.sheet.XCellRangesQuery, it
defines (among others) a method

XSheetCellRanges queryContentCells (short cellFlags

OpenOffice.org 2.0 Developer's Guide « May 2005

which queries for cells having content as defined in the constants group
com.sun.star.sheet.CellFlags. One of these cell flags is FORMULA. From queryContentCells () we
receive an object with an com.sun.star.sheet.xSheetCellRanges interface, which has these
methods:

XEnumerationAccess getCells ()

String getRangeAddressesAsString()

sequence< com.sun.star.table.CellRangeAddress > getRangeAddresses ()
The method getCells () can be used to list all formula cells and the containing formulas in the
spreadsheet document from our FirstLoadComponent example, utilizing XEnumerationAc-
cess.(FirstSteps/FirstLoadComponent.java)

XCellRangesQuery xCellQuery = (XCellRangesQuery)UnoRuntime.queryInterface (
XCellRangesQuery.class, sheet);

XSheetCellRanges xFormulaCells = xCellQuery.queryContentCells (
(short) com.sun.star.sheet.CellFlags.FORMULA) ;

XEnumerationAccess xFormulas = xFormulaCells.getCells() ;
XEnumeration xFormulaEnum = xFormulas.createEnumeration();

while (xFormulaEnum.hasMoreElements ()) {
Object formulaCell = xFormulaEnum.nextElement () ;

// do something with formulaCell

xCell = (XCell)UnoRuntime.queryInterface (XCell.class, formulaCell);

XCellAddressable xCellAddress = (XCellAddressable)UnoRuntime.queryInterface (
XCellAddressable.class, xCell);

System.out.print ("Formula cell in column " + xCellAddress.getCellAddress () .Column
+ ", row " + xCellAddress.getCellAddress () .Row
+ " contains " + xCell.getFormula());

2.6 How do I know Which Type I Have?

A common problem is deciding what capabilities an object really has, after you receive it from a
method.

By observing the code completion in Java IDE, you can discover the base interface of an object
returned from a method. You will notice that 1oadComponentFromURL () returns a
com.sun.star.lang.XComponent.

By pressing Alt + F1 in the NetBeans IDE you can read specifications about the interfaces and ser-
vices you are using.

However, methods can only be specified to return one interface type. The interface you get from a

method very often supports more interfaces than the one that is returned by the method (especially
when the design of those interfaces predates the availability of multiple-inheritance interface types
in UNO). Furthermore, the interface does not tell anything about the properties the object contains.

Therefore you should uses this manual to get an idea how things work. Then start writing code,
using the code completion and the API reference.

In addition, you can try the Instancelnspector, a Java tool which is part of the OpenOffice.org SDK
examples. It is a Java component that can be registered with the office and shows interfaces and
properties of the object you are currently working with.

In OpenOffice.org Basic, you can inspect objects using the following Basic properties.

sub main

oDocument = thiscomponent

msgBox (oDocument .dbg_methods)

msgBox (oDocument .dbg properties)

msgBox (oDocument .dbg supportedInterfaces)
end sub

55

56

2.7 Example: Hello Text, Hello Table, Hello Shape

The goal of this section is to give a brief overview of those mechanisms in the OpenOffice.org API,
which are common to all document types. The three main application areas of OpenOffice.org are
text, tables and drawing shapes. The point is: texts, tables and drawing shapes can occur in all
three document types, no matter if you are dealing with a Writer, Calc or Draw/Impress file, but
they are treated in the same manner everywhere. When you master the common mechanisms, you
will be able to insert and use texts, tables and drawings in all document types.

2.7.1 Common Mechanisms for Text, Tables and Drawings

We want to stress the common ground, therefore we start with the common interfaces and proper-
ties that allow to manipulate existing texts, tables and drawings. Afterwards we will demonstrate
the different techniques to create text, table and drawings in each document type.

The key interfaces and properties to work with existing texts, tables and drawings are the fol-
lowing;:

For text the interface com.sun.star.text.XText contains the methods that change the actual text
and other text contents (examples for text contents besides conventional text paragraphs are text
tables, text fields, graphic objects and similar things, but such contents are not available in all con-
texts). When we talk about text here, we mean any text - text in text documents, text frames, page
headers and footers, table cells or in drawing shapes. XText is the key for text everywhere in
OpenOffice.org.

OpenOffice.org 2.0 Developer's Guide « May 2005

com.sun.star.text.XTextRange
<<interface>>

void setString (string text)

string getString ()
com.sun.star.textXTextRange getStart ()
com.sun.star.textXTextRange getEnd ()
com.sun.star.textXText getText ()

com.sun.star.text.XSimpleText
<<interface>>

com.sun.star.textXTextCursor createTextCursor ()
com.sun.star.textXTextCursor createTextCursorByRange
(com.sun.star.text.XTextRange textRange)
void insertString
(com.sun.star.text.XTextRange textRange, string text, boolean absorb)
void insertControlCharacter
(com.sun.star.text.XTextRange textRange, short controlCharacter,
boolean absorb)

com.sun.star.text. XText
<<interface>>

void insertTextContent
(com.sun.star.text.XTextRange textRange,
com.sun.star.text.XTextContent content, boolean absorb)
void removeTextContent (com.sun.star.text.XTextContent content)

Hllustration 2.6: XTextRange

The interface com.sun.star.text.xXText has the ability to set or get the text as a single string, and
to locate the beginning and the end of a text. Furthermore, XText can insert strings at an arbitrary
position in the text and create text cursors to select and format text. Finally, xText handles text
contents through the methods insertTextContent and removeTextContent, although not all
texts accept text contents other than conventional text. In fact, XText covers all this by inheriting
from com.sun.star.text.XSimpleText that is inherited from com.sun.star.text.XTextRange.

Text formatting happens through the properties which are described in the services
com.sun.star.style.ParagraphProperties and com.sun.star.style.CharacterProperties.

The following example method manipulateText () adds text, then it uses a text cursor to select
and format a few words using CharacterProperties, afterwards it inserts more text. The method
manipulateText () only contains the most basic methods of xText so that it works with every text
object. In particular, it avoids insertTextContent (), since there are no text contents except for
conventional text that can be inserted in all text objects.(FirstSteps/HelloTextTableShape.java)

protected void manipulateText (XText xText) throws com.sun.star.uno.Exception {
// simply set whole text as one string
xText.setString ("He lay flat on the brown, pine-needled floor of the forest, "
+ "his chin on his folded arms, and high overhead the wind blew in the tops "
+ "of the pine trees.");

// create text cursor for selecting and formatting

XTextCursor xTextCursor = xText.createTextCursor();

XPropertySet xCursorProps = (XPropertySet)UnoRuntime.queryInterface (
XPropertySet.class, xTextCursor);

// use cursor to select "He lay" and apply bold italic
xTextCursor.gotoStart (false) ;

57

xTextCursor.goRight ((short) 6, true);
// from CharacterProperties
xCursorProps.setPropertyValue ("CharPosture",
com.sun.star.awt.FontSlant.ITALIC) ;
xCursorProps.setPropertyValue ("CharWeight",
new Float (com.sun.star.awt.FontWeight.BOLD)) ;

// add more text at the end of the text using insertString
xTextCursor.gotoEnd (false) ;
xText.insertString (xTextCursor, " The mountainside sloped gently where he lay;
+ "but below it was steep and he could see the dark of the oiled road "
+ "winding through the pass. There was a stream alongside the road "
+ "and far down the pass he saw a mill beside the stream and the falling water "
+ "of the dam, white in the summer sunlight.", false);
// after insertString the cursor is behind the inserted text, insert more text
xText.insertString (xTextCursor, "\n \"Is that the mill?\" he asked.", false);

}

In tables and table cells, the interface com.sun.star.table.XCellRange allows you to retrieve
single cells and subranges of cells. Once you have a cell, you can work with its formula or numeric
value through the interface com.sun.star.table.XCell.

com.sun.star.table.XCellRange
<<interface>>

com.sun.star.tableXCell getCellByPosition

(long nColumn, long nRow)
com.sun.star.tableXCellRange getCellRangeByPosition

(long nLeft, long nTop, long nRight, long nBottom)
com.sun.star.tableXCellRange getCellRangeByName

(string aRange)

com.sun.star.table.XCell
<<interface>>

string getFormula ()

void setFormula (string aFormula)

double getValue ()

void setValue (double nValue)
com.sun.star.table.CellContentType getType ()
long getEror ()

Hllustration 2.7: Cell and Cell Range

Table formatting is partially different in text tables and spreadsheet tables. Text tables use the
properties specified in com.sun.star.text.TextTable, whereas spreadsheet tables use
com.sun.star.table.CellProperties. Furthermore there are table cursors that allow to select
and format cell ranges and the contained text. But since a com.sun.star.text.TextTableCursor
works quite differently from a com.sun.star.sheet.SheetCellCursor, we will discuss them in
the chapters about text and spreadsheet documents.(FirstSteps/HelloTextTableShape.java)

protected void manipulateTable (XCellRange xCellRange) throws com.sun.star.uno.Exception ({

String backColorPropertyName = "";
XPropertySet xTableProps = null;

// enter column titles and a cell value

// Enter "Quotation" in Al, "Year" in Bl. We use setString because we want to change the whole
// cell text at once

XCell xCell = xCellRange.getCellByPosition (0,0);

XText xCellText = (XText)UnoRuntime.queryInterface (XText.class, xCell);

xCellText.setString ("Quotation") ;

xCell = xCellRange.getCellByPosition(1,0);

xCellText = (XText)UnoRuntime.queryInterface (XText.class, xCell);

xCellText.setString ("Year") ;

// cell value
xCell = xCellRange.getCellByPosition(1,1);
xCell.setValue (1940) ;

OpenOffice.org 2.0 Developer's Guide « May 2005

// select the table headers and get the cell properties

XCellRange xSelectedCells = xCellRange.getCellRangeByName ("A1:B1");

XPropertySet xCellProps = (XPropertySet)UnoRuntime.queryInterface (
XPropertySet.class, xSelectedCells);

// format the color of the table headers and table borders

// we need to distinguish text and spreadsheet tables:

// - the property name for cell colors is different in text and sheet cells

// - the common property for table borders is com.sun.star.table.TableBorder, but
// we must apply the property TableBorder to the whole text table,

// whereas we only want borders for spreadsheet cells with content.

// XServiceInfo allows to distinguish text tables from spreadsheets
XServiceInfo xServiceInfo = (XServiceInfo)UnoRuntime.queryInterface (
XServiceInfo.class, xCellRange);

// determine the correct property name for background color and the XPropertySet interface
// for the cells that should get colored border lines
if (xServicelInfo.supportsService ("com.sun.star.sheet.Spreadsheet")) {
backColorPropertyName = "CellBackColor";
// select cells
xSelectedCells = xCellRange.getCellRangeByName ("Al:B2");
// table properties only for selected cells
xTableProps = (XPropertySet)UnoRuntime.queryInterface (
XPropertySet.class, xSelectedCells);
}
else if (xServicelInfo.supportsService ("com.sun.star.text.TextTable")) {
backColorPropertyName = "BackColor";
// table properties for whole table
xTableProps = (XPropertySet)UnoRuntime.queryInterface (
XPropertySet.class, xCellRange);
}
// set cell background color
xCellProps.setPropertyValue (backColorPropertyName, new Integer (0x99CCFF)) ;

// set table borders
// create description for blue line, width 10
// colors are given in ARGB, comprised of four bytes for alpha-red-green-blue as in O0xAARRGGBB
BorderLine theline = new BorderLine();
theLine.Color = 0x000099;
thelLine.OuterLineWidth = 10;
// apply line description to all border lines and make them valid
TableBorder bord = new TableBorder () ;
bord.VerticallLine = bord.HorizontalLine =
bord.LeftLine = bord.RightLine =
bord.TopLine = bord.BottomLine =
theLine;
bord.IsVerticallLineValid = bord.IsHorizontallLinevValid =
bord.IsLeftLineValid = bord.IsRightLineValid =
bord.IsTopLineValid = bord.IsBottomLineValid =
true;

xTableProps.setPropertyValue ("TableBorder", bord);

}

On drawing shapes, the interface com.sun.star.drawing.XShape is used to determine the position
and size of a shape.

com.sun.star.drawing.XShape
<<interface>>

string getShapeType ()

com.sun.star.awt.Point getPosition ()

void setPosition (com.sun.star.awt.Point aPosition)
com.sun.star.awt.Size getSize () invoke

void setSize (com.sun.star.awt.Size aSize)

Hllustration 2.8: XShape

Everything else is a matter of property-based formatting and there is a multitude of properties to
use. OpenOffice.org comes with eleven different shapes that are the basis for the drawing tools in

the GUI (graphical user interface). Six of the shapes have individual properties that reflect their
characteristics. The six shapes are:

- com.sun.star.drawing.EllipseShape for circles and ellipses.

- com.sun.star.drawing.RectangleShape for boxes.

59

. com.sun.star.drawing.TextShape for text boxes.
. com.sun.star.drawing.CaptionShape for labeling.
- com.sun.star.drawing.MeasureShape for metering.

. com.sun.star.drawing.ConnectorShape for lines that can be "glued'to other shapes to draw
connecting lines between them.

Five shapes have no individual properties, rather they share the properties defined in the service
com.sun.star.drawing.PolyPolygonBezierDescriptor:

. com.sun.star.drawing.LineShape is for lines and arrows.
com.sun.star.drawing.PolyLineShape is for open shapes formed by straight lines.
com.sun.star.drawing.PolyPolygonShape is for shapes formed by one or more polygons.
com.sun.star.drawing.ClosedBezierShape is for closed bezier shapes.

com.sun.star.drawing.PolyPolygonBezierShape is for combinations of multiple polygon
and Bezier shapes.

All of these eleven shapes use the properties from the following services:

- com.sun.star.drawing.Shape describes basic properties of all shapes such as the layer a
shape belongs to, protection from moving and sizing, style name, 3D transformation and name.

. com.sun.star.drawing.LineProperties determines how the lines of a shape look
. com.sun.star.drawing.Text has no properties of its own, but includes:

- com.sun.star.drawing.TextProperties that affects numbering, shape growth and text
alignment in the cell, text animation and writing direction.

- com.sun.star.style.ParagraphProperties is concerned with paragraph formatting.
. com.sun.star.style.CharacterProperties formats characters

- com.sun.star.drawing.ShadowProperties deals with the shadow of a shape.
com.sun.star.drawing.RotationDescriptor sets rotation and shearing of a shape.

com.sun.star.drawing.FillProperties is only for closed shapes and describes how the
shape is filled.

com.sun.star.presentation.Shape adds presentation effects to shapes in presentation docu-
ments.

Consider the following example showing how these properties work:
(FirstSteps/HelloTextTableShape.java)

protected void manipulateShape (XShape xShape) throws com.sun.star.uno.Exception {
// for usage of setSize and setPosition in interface XShape see method useDraw() below
XPropertySet xShapeProps = (XPropertySet)UnoRuntime.queryInterface (XPropertySet.class, xShape);
// colors are given in ARGB, comprised of four bytes for alpha-red-green-blue as in O0xAARRGGBB
xShapeProps.setPropertyValue ("FillColor", new Integer (0x99CCFF)) ;
xShapeProps.setPropertyValue ("LineColor", new Integer (0x000099)) ;
// angles are given in hundredth degrees, rotate by 30 degrees
xShapeProps.setPropertyValue ("RotateAngle", new Integer (3000)) ;

60 OpenOffice.org 2.0 Developer's Guide « May 2005

2.7.2 Creating Text, Tables and Drawing Shapes

The three manipulatexxx methods above took text, table and shape objects as parameters and
altered them. The following methods show how to create such objects in the various document
types. Note that all documents have their own service factory to create objects to be inserted into
the document. Aside from that it depends very much on the document type how you proceed. This
section only demonstrates the different procedures, the explanation can be found in the chapters
about Text, Spreadsheet and Drawing Documents.

First, a small convenience method is used to create new
documents.(FirstSteps/HelloTextTableShape.java)

protected XComponent newDocComponent (String docType) throws java.lang.Exception {

String loadUrl = "private:factory/" + docType;

xRemoteServiceManager = this.getRemoteServiceManager (unoUrl) ;

Object desktop = xRemoteServiceManager.createInstanceWithContext (
"com.sun.star.frame.Desktop", xRemoteContext) ;

XComponentLoader xComponentLoader = (XComponentLoader)UnoRuntime.queryInterface (
XComponentLoader.class, desktop);

PropertyValue[] loadProps = new PropertyValue[O0];

return xComponentLoader.loadComponentFromURL (loadUrl, " blank", 0, loadProps);

Text, Tables and Drawings in Writer

The method useliriter creates a writer document and manipulates its text, then uses the docu-
ment's internal service manager to instantiate a text table and a shape, inserts them and manipu-
lates the table and shape (FirstSteps/HelloTextTableShape.java). Refer to 7 Text Documents for
more detailed information.

protected void useWriter () throws java.lang.Exception {
try {
// create new writer document and get text, then manipulate text
XComponent xWriterComponent = newDocComponent ("swriter") ;
XTextDocument xTextDocument = (XTextDocument)UnoRuntime.queryInterface (
XTextDocument.class, xWriterComponent) ;
XText xText = xTextDocument.getText ();

manipulateText (xText) ;

// get internal service factory of the document
XMultiServiceFactory xWriterFactory = (XMultiServiceFactory)UnoRuntime.queryInterface (
XMultiServiceFactory.class, xWriterComponent) ;

// insert TextTable and get cell text, then manipulate text in cell

Object table = xWriterFactory.createInstance ("com.sun.star.text.TextTable");

XTextContent xTextContentTable = (XTextContent)UnoRuntime.queryInterface (
XTextContent.class, table);

xText.insertTextContent (xText.getEnd (), xTextContentTable, false);

XCellRange xCellRange = (XCellRange)UnoRuntime.queryInterface (
XCellRange.class, table);

XCell xCell = xCellRange.getCellByPosition (0, 1);

XText xCellText = (XText)UnoRuntime.queryInterface (XText.class, xCell);

manipulateText (xCellText) ;
manipulateTable (xCellRange) ;

// insert RectangleShape and get shape text, then manipulate text

Object writerShape = xWriterFactory.createInstance (
"com.sun.star.drawing.RectangleShape") ;
XShape xWriterShape = (XShape)UnoRuntime.queryInterface (

XShape.class, writerShape);

xWriterShape.setSize (new Size (10000, 10000));

XTextContent xTextContentShape = (XTextContent)UnoRuntime.queryInterface (
XTextContent.class, writerShape);

xText.insertTextContent (xText.getEnd (), xTextContentShape, false);
XPropertySet xShapeProps = (XPropertySet)UnoRuntime.queryInterface (
XPropertySet.class, writerShape);

// wrap text inside shape
xShapeProps.setPropertyValue ("TextContourFrame", new Boolean(true));

61

XText xShapeText = (XText)UnoRuntime.queryInterface (XText.class, writerShape) ;

manipulateText (xShapeText) ;
manipulateShape (xWriterShape) ;
}
catch(com.sun.star.lang.DisposedException e) { //works from Patch 1
xRemoteContext = null;
throw e;

Text, Tables and Drawings in Calc

The method useCalc creates a calc document, uses its document factory to create a shape and
manipulates the cell text, table and shape. The chapter 8 Spreadsheet Documents treats all aspects of
spreadsheets. (FirstSteps/HelloTextTableShape.java)

protected void useCalc() throws java.lang.Exception ({
try {

// create new calc document and manipulate cell text

XComponent xCalcComponent = newDocComponent ("scalc");

XSpreadsheetDocument xSpreadsheetDocument =
(XSpreadsheetDocument)UnoRuntime.queryInterface (

XSpreadsheetDocument .class, xCalcComponent) ;

Object sheets = xSpreadsheetDocument.getSheets();

XIndexAccess xIndexedSheets = (XIndexAccess)UnoRuntime.queryInterface (
XIndexAccess.class, sheets);

Object sheet = xIndexedSheets.getByIndex(0);

//get cell A2 in first sheet

XCellRange xSpreadsheetCells = (XCellRange)UnoRuntime.queryInterface (
XCellRange.class, sheet);

XCell xCell = xSpreadsheetCells.getCellByPosition(0,1);

XPropertySet xCellProps = (XPropertySet)UnoRuntime.queryInterface (
XPropertySet.class, xCell);

xCellProps.setPropertyValue ("IsTextWrapped", new Boolean (true)) ;

XText xCellText = (XText)UnoRuntime.queryInterface (XText.class, xCell);

manipulateText (xCellText) ;
manipulateTable (xSpreadsheetCells) ;

// get internal service factory of the document
XMultiServiceFactory xCalcFactory = (XMultiServiceFactory)UnoRuntime.queryInterface (
XMultiServiceFactory.class, xCalcComponent) ;
// get Drawpage
XDrawPageSupplier xDrawPageSupplier =
(XDrawPageSupplier)UnoRuntime.queryInterface (XDrawPageSupplier.class, sheet);
XDrawPage xDrawPage = xDrawPageSupplier.getDrawPage () ;

// create and insert RectangleShape and get shape text, then manipulate text
Object calcShape = xCalcFactory.createlInstance (
"com.sun.star.drawing.RectangleShape") ;
XShape xCalcShape = (XShape)UnoRuntime.queryInterface (
XShape.class, calcShape);
xCalcShape.setSize (new Size (10000, 10000));
xCalcShape.setPosition (new Point (7000, 3000)) ;

xDrawPage.add (xCalcShape) ;

XPropertySet xShapeProps = (XPropertySet)UnoRuntime.queryInterface (
XPropertySet.class, calcShape);

// wrap text inside shape

xShapeProps.setPropertyValue ("TextContourFrame", new Boolean(true));

XText xShapeText = (XText)UnoRuntime.queryInterface (XText.class, calcShape);

manipulateText (xShapeText) ;
manipulateShape (xCalcShape) ;

}

catch(com.sun.star.lang.DisposedException e) { //works from Patch 1
xRemoteContext = null;
throw e;

62 OpenOffice.org 2.0 Developer's Guide « May 2005

Drawings and Text in Draw

The method useDraw creates a draw document and uses its document factory to instantiate and
add a shape, then it manipulates the shape. The chapter 9 Drawing casts more light on drawings
and presentations. (FirstSteps/HelloTextTableShape.java)

protected void useDraw() throws java.lang.Exception {
try {
//create new draw document and insert ractangle shape
XComponent xDrawComponent = newDocComponent ("sdraw") ;
XDrawPagesSupplier xDrawPagesSupplier =
(XDrawPagesSupplier)UnoRuntime.queryInterface (
XDrawPagesSupplier.class, xDrawComponent) ;

Object drawPages = xDrawPagesSupplier.getDrawPages () ;

XIndexAccess xIndexedDrawPages = (XIndexAccess)UnoRuntime.queryInterface (
XIndexAccess.class, drawPages);

Object drawPage = xIndexedDrawPages.getByIndex(0) ;

XDrawPage xDrawPage = (XDrawPage)UnoRuntime.queryInterface (XDrawPage.class, drawPage) ;

// get internal service factory of the document
XMultiServiceFactory xDrawFactory =
(XMultiServiceFactory)UnoRuntime.queryInterface (
XMultiServiceFactory.class, xDrawComponent) ;

Object drawShape = xDrawFactory.createInstance (
"com.sun.star.drawing.RectangleShape") ;
XShape xDrawShape = (XShape)UnoRuntime.queryInterface (XShape.class, drawShape);

xDrawShape.setSize (new Size (10000, 20000));
xDrawShape.setPosition (new Point (5000, 5000));
xDrawPage.add (xDrawShape) ;

XText xShapeText = (XText)UnoRuntime.queryInterface (XText.class, drawShape);
XPropertySet xShapeProps = (XPropertySet)UnoRuntime.queryInterface (
XPropertySet.class, drawShape);

// wrap text inside shape
xShapeProps.setPropertyValue ("TextContourFrame", new Boolean(true));

manipulateText (xShapeText) ;
manipulateShape (xDrawShape) ;

}

catch(com.sun.star.lang.DisposedException e) { //works from Patch 1
xRemoteContext = null;
throw e;

63

Professional UNO

This chapter provides in-depth information about UNO and the use of UNO in various program -
ming languages. There are four sections:

The 3.1 Professional UNO - Introduction gives an outline of the UNO architecture.

The section 3.2 Professional UNO - API Concepts supplies background information on the API
reference.

The section 3.3 Professional UNO - UNO Concepts describes the mechanics of UNO, i.e. it shows
how UNO objects connect and communicate with each other.

The section 3.4 Professional UNO - UNO Language Bindings elaborates on the use of UNO from
Java, C++, OpenOffice.org Basic, COM automation, and CLI.

3.1 Introduction

The goal of UNO (Universal Network Objects) is to provide an environment for network objects
across programming language and platform boundaries. UNO objects run and communicate
everywhere. UNO reaches this goal by providing the following fundamental framework:

UNO objects are specified in an abstract meta language, called UNOIDL (UNO Interface Defini-
tion Language), which is similar to CORBA IDL or MIDL. From UNOIDL specifications, lan-
guage dependent header files and libraries can be generated to implement UNO objects in the
target language. UNO objects in the form of compiled and bound libraries are called compo-
nents. Components must support certain base interfaces to be able to run in the UNO environ-
ment.

To instantiate components in a target environment UNO uses a factory concept. This factory is
called the service manager. It maintains a database of registered components which are known
by their name and can be created by name. The service manager might ask Linux to load and
instantiate a shared object written in C++ or it might call upon the local Java VM to instantiate a
Java class. This is transparent for the developer, there is no need to care about a component's
implementation language. Communication takes place exclusively over interface calls as speci-
fied in UNOIDL.

UNO provides bridges to send method calls and receive return values between processes and
between objects written in different implementation languages. The remote bridges use a spe-
cial UNO remote protocol (URP) for this purpose which is supported for sockets and pipes.
Both ends of the bridge must be UNO environments, therefore a language-specific UNO run-
time environment to connect to another UNO process in any of the supported languages is
required. These runtime environments are provided as language bindings.

65

66

Most objects of OpenOffice.org are able to communicate in a UNO environment. The specifica-
tion for the programmable features of OpenOffice.org is called the OpenOffice.org APIL

3.2 API Concepts

The OpenOffice.org API is a language independent approach to specify the functionality of
OpenOffice.org. Its main goals are to provide an API to access the functionality of OpenOffice.org,
to enable users to extend the functionality by their own solutions and new features, and to make
the internal implementation of OpenOffice.org exchangeable.

A long term target on the OpenOffice.org roadmap is to split the existing OpenOffice.org into
small components which are combined to provide the complete OpenOffice.org functionality. Such
components are manageable, they interact with each other to provide high level features and they
are exchangeable with other implementations providing the same functionality, even if these new
implementations are implemented in a different programming language. When this target will be
reached, the API, the components and the fundamental concepts will provide a construction Kkit,
which makes OpenOffice.org adaptable to a wide range of specialized solutions and not only an
office suite with a predefined and static functionality.

This section provides you with a thorough understanding of the concepts behind the
OpenOffice.org API. In the API reference there are UNOIDL data types which are unknown out-
side of the API. The reference provides abstract specifications which sometimes can make you
wonder how they map to implementations you can actually use.

The data types of the API reference are explained in 3.2.1 Professional UNO - API Concepts - Data
Types. The relationship between API specifications and OpenOffice.org implementations is treated
in 3.2.2 Professional UNO - API Concepts - Understanding the API Reference.

3.2.1 Data Types

The data types in the API reference are UNO types which have to be mapped to the types of any
programming language that can be used with the OpenOffice.org API. In the chapter 2 First Steps
the most important UNO types were introduced. However, there is much more to be said about
simple types, interfaces, properties and services in UNO. There are special flags, conditions and
relationships between these entities which you will want to know if you are working with UNO on
a professional level.

This section explains the types of the API reference from the perspective of a developer who wants
to use the OpenOffice.org API. If you are interested in writing your own components, and you
must define new interfaces and types, please refer to the chapter 4 Writing UNO Components,
which describes how to write your own UNOIDL specifications and how to create UNO compo-
nents.

Simple Types

UNO provides a set of predefined, simple types which are listed in the following table:

UNO Type Description
voi d Empty type, used only as method return type and in any.
bool ean Can be true or false.

OpenOffice.org 2.0 Developer's Guide « May 2005

UNO Type
byt e

short

Description
Signed 8-bit integer type (ranging from -128 to 127, inclusive).
Signed 16-bit integer type (ranging from —32768 to 32767, inclusive).

unsigned short
long
unsigned long

hyper

unsigned hyper

Unsigned 16-bit integer type (deprecated).
Signed 32-bit integer type (ranging from —2147483648 to 2147483647, inclusive).
Unsigned 32-bit integer type (deprecated).

Signed 64-bit integer type (ranging from —9223372036854775808 to
9223372036854775807, inclusive).

Unsigned 64-bit integer type (deprecated).

float IEC 60559 single precision floating point type.

double IEC 60559 double precision floating point type.

char Represents individual Unicode characters (more precisely: individual UTF-16 code
units).

string Represents Unicode strings (more precisely: strings of Unicode scalar values).

type Meta type that describes all UNO types.

any Special type that can represent values of all other types.

The chapters about language bindings 3.4.1 Professional UNO - UNO Language Bindings - Java Lan-
guage Binding, 3.4.2 Professional UNO - UNO Language Bindings - C++ Language Binding, 3.4.3 Profes-
sional UNO - UNO Language Bindings - OpenOlffice.org Basic and 3.4.4 Professional UNO - UNO Lan-
guage Bindings - Automation Bridge describe how these types are mapped to the types of your target
language.

The Any Type

The special type any can represent values of all other UNO types. In the target languages, the any
type requires special treatment. There is an AnyConverter in Java and special operators in C++.
For details, see the section 3.4 Professional UNO - UNO Language Bindings about language bindings.

Interfaces

Communication between UNO objects is based on object interfaces. Interfaces can be seen from the
outside or the inside of an object.

From the outside of an object, an interface provides a functionality or special aspect of the object.
Interfaces provide access to objects by publishing a set of operations that cover a certain aspect of
an object without telling anything about its internals.

The concept of interfaces is quite natural and frequently used in everyday life. Interfaces allow the
creation of things that fit in with each other without knowing internal details about them. A power
plug that fits into a standard socket or a one-size-fits-all working glove are simple examples. They
all work by standardizing the minimal conditions that must be met to make things work together.

A more advanced example would be the “remote control aspect” of a simple TV system. One pos-
sible feature of a TV system is a remote control. The remote control functions can be described by
an XpPower and an xChannel interface. The illustration below shows a RemoteControl object with
these interfaces:

67

68

XPower

turnOn ()
RemoteControl turnOff ()

<<service>>
: XChannel
select (short sChannel)

next ()
previous ()

Illustration 3.1: RemoteControl service

The xpPower interface has the functions turnoOn () and turnOff () to control the power and the
XChannel interface has the functions select (), next (), previous () to control the current
channel. The user of these interfaces does not care if he uses an original remote control that came
with a TV set or a universal remote control as long as it carries out these functions. The user is only
dissatisfied if some of the functions promised by the interface do not work with a remote control.

From the inside of an object, or from the perspective of someone who implements a UNO object,
interfaces are abstract specifications. The abstract specification of all the interfaces in the
OpenOffice.org API has the advantage that user and implementer can enter into a contract,
agreeing to adhere to the interface specification. A program that strictly uses the OpenOffice.org
API according to the specification will always work, while an implementer can do whatever he
wants with his objects, as long as he serves the contract.

UNO uses the interface type to describe such aspects of UNO objects. By convention, all inter-
face names start with the letter X to distinguish them from other types. All interface types must
inherit the com.sun.star.uno.XInterface root interface, either directly or in the inheritance hier-
archy. XInterface is explained in 3.3.3 Professional UNO - UNO Concepts - Using UNO Interfaces.
The interface types define methods (sometimes also called operations) to provide access to the
specified UNO objects.

Interfaces allow access to the data inside an object through dedicated methods (member functions)
which encapsulate the data of the object. The methods always have a parameter list and a return
value, and they may define exceptions for smart error handling.

The exception concept in the OpenOffice.org API is comparable with the exception concepts
known from Java or C++. All operations can raise com.sun.star.uno.RuntimeExceptions
without explicit specification, but all other exceptions must be specified. UNO exceptions are
explained in the section 3.3.7 Professional UNO - UNO Concepts - Exception Handling below.

Consider the following two examples for interface definitions in UNOIDL notation. UNOIDL inter-
faces resemble Java interfaces, and methods look similar to Java method signatures. However, note
the flags in square brackets in the following example:

// base interface for all UNO interfaces

interface XInterface

{
any queryInterface([in] type aType);
[oneway] void acquire() ;
[oneway] void release();

}i
// fragment of the Interface com.sun.star.io.XInputStream

interface XInputStream: com::sun::star::uno::XInterface
{
long readBytes([out] sequence<byte> aData,
[in] long nBytesToRead)
raises(com::sun::star::io::NotConnectedException,
com: :sun::star::io::BufferSizeExceededException,
com: :sun::star::io::I0Exception) ;

OpenOffice.org 2.0 Developer's Guide « May 2005

The [oneway] flag indicates that an operation can be executed asynchronously if the underlying
method invocation system does support this feature. For example, a UNO Remote Protocol (URP)
bridge is a system that supports oneway calls.

Although there are no general problems with the specification and the implementation of the UNO oneway
feature, there are several API remote usage scenarios where oneway calls cause deadlocks in
OpenOffice.org. Therefore, do not introduce new oneway methods with new OpenOffice.org UNO APIs.

There are also parameter flags. Each parameter definition begins with one of the direction flags in,
out, or inout to specify the use of the parameter:

in specifies that the parameter will be used as an input parameter only
out specifies that the parameter will be used as an output parameter only
inout specifies that the parameter will be used as an input and output parameter

These parameter flags do not appear in the API reference. The fact that a parameter is an [out] or
[inout] parameter is explained in the method details.

Interfaces consisting of methods form the basis for service specifications.

Services

We have seen that a single-inheritance interface describes only one aspect of an object. However, it
is quite common that objects have more than one aspect. UNO uses multiple-inheritance interfaces
and services to specify complete objects which can have many aspects.

In a first step, all the various aspects of an object (which are typically represented by single-inheri-
tance interfaces) are grouped together in one multiple-inheritance interface type. If such an object
is obtainable by calling specific factory methods, this step is all that is needed. The factory methods
are specified to return values of the given, multiple-inheritance interface type. If, however, such
an object is available as a general service at the global component context, a service description
must be provided in a second step. This service description will be of the new style, mapping the
service name (under which the service is available at the component context) to the given, mul-
tiple-inheritance interface type.

For backward compatibility, there are also old-style services, which comprise a set of single-inheri-
tance interfaces and properties that are needed to support a certain functionality. Such a service
can include other old-style services as well. The main drawback of an old-style service is that it is
unclear whether it describes objects that can be obtained through specific factory methods (and for
which there would therefore be no new-style service description), or whether it describes a general
service that is available at the global component context, and for which there would thus be a new-
style service description.

From the perspective of a user of a UNO object, the object offers one or sometimes even several
independent, multiple-inheritance interfaces or old-style services described in the API reference.
The services are utilized through method calls grouped in interfaces, and through properties,
which are handled through special interfaces as well. Because the access to the functionality is
provided by interfaces only, the implementation is irrelevant to a user who wants to use an object.

From the perspective of an implementer of a UNO object, multiple-inheritance interfaces and old-
style services are used to define a functionality independently of a programming language and
without giving instructions about the internal implementation of the object. Implementing an ob-
ject means that it must support all specified interfaces and properties. It is possible that a UNO
object implements more than one independent, multiple-inheritance interface or old-style service.
Sometimes it is useful to implement two or more independent, multiple-inheritance interfaces or

69

services because they have related functionality, or because they support different views to the
object.

Illustration 3.1 shows the relationship between interfaces and services. The language independent

specification of an old-style service with several interfaces is used to implement a UNO object that

fulfills the specification. Such a UNO object is sometimes called a “component,” although that term
is more correctly used to describe deployment entities within a UNO environment. The illustration
uses an old-style service description that directly supports multiple interfaces; for a new-style ser-

vice description, the only difference would be that it would only support one multiple-inheritance

interface, which in turn would inherit the other interfaces.

Interfaces

Service Specification

<<service>>

Lo

-

Service Implementation
<<component>>

Hllustration 3.2: Interfaces, services and implementation

The functionality of a TV system with a TV set and a remote control can be described in terms of
service specifications. The interfaces xPower and xChannel described above would be part of a
service specification RemoteControl. The new service TvSset consists of the three interfaces
XPower, XChannel and XStandby to control the power, the channel selection, the additional power
function standby () and a timer () function.

XPower XPower
turnOn () turnOn ()
turnOff () turnOff ()
XStandby Remote
WSet —— Control XChannel
sSenicesy standby () <<service>> —_—
setTimer (short sMinutes) select (short sChannel)
next ()
XChannel previous ()
select (short sChannel)

next ()
previous ()

Hlustration 3.3: TV System Specification

Referencing Interfaces

References to interfaces in a service definition mean that an implementation of this service must
offer the specified interfaces. However, optional interfaces are possible. If a multiple-inheritance
interface inherits an optional interface, or an old-style service contains an optional interface, any
given UNO object may or may not support this interface. If you utilize an optional interface of a
UNO object, always check if the result of queryInterface () is equal to null and react accord-

70 OpenOffice.org 2.0 Developer's Guide « May 2005

ingly—otherwise your code will not be compatible with implementations without the optional
interface and you might end up with null pointer exceptions. The following UNOIDL snippet
shows a fragment of the specification for the old-style com.sun.star.text.TextDocument service
in the OpenOffice.org API. Note the flag optional in square brackets, which makes the interfaces
XFootnotesSupplier and XEndnotesSupplier non-mandatory.

// com.sun.star.text.TextDocument

service TextDocument

{

interface com::sun::star::text::XTextDocument;

interface com::sun::star::util::XSearchable;

interface com::sun::star::util::XRefreshable;

[optional] interface com::sun::star::text::XFootnotesSupplier;
[optional] interface com::sun::star::text::XEndnotesSupplier;

}i

Service Constructors

New-style services can have constructors, similar to interface methods:

service SomeService: XSomeInterface {

createl () ;
create2 ([in] long argl, [in] string arg2);
create3([in] any... rest);

}i

In the above example, there are three explicit constructors, named createl, create2, and create3.
The first has no parameters, the second has two normal parameters, and the third has a special rest
parameter, which accepts an arbitrary number of any values. Constructor parameters may only be
[in], and a rest parameter must be the only parameter of a constructor, and must be of type any;
also, unlike an interface method, a service constructor does not specify a return type.

The various language bindings map the UNO constructors into language-specific constructs, which
can be used in client code to obtain instances of those services, given a component context. The
general convention (followed,for example, by the Java and C++ language bindings) is to map each
constructor to a static method (resp. function) with the same name, that takes as a first parameter
an XComponentContext, followed by all the parameters specified in the constructor, and returns
an (appropriately typed) service instance. If an instance cannot be obtained, a
com.sun.star.uno.DeploymentException is thrown. The above SomeService would map to the
following Java 1.5 class, for example:

public class SomeService ({
public static XSomelInterface createl (
com.sun.star.uno.XComponentContext context) { ... }
public static XSomelInterface create2 (
com.sun.star.uno.XComponentContext context, int argl, String arg2) { ... }
public static XSomelInterface create3(
com.sun.star.uno.XComponentContext context, Object... rest) { ... }
}
Service constructors can also have exception specifications (“raises (Exceptionl, ...)”),
which are treated in the same way as exception specifications of interface methods. (If a con-
structor has no exception specification, it may only throw runtime exceptions,

com.sun.star.uno.DeploymentException in particular.)
If a new-style service is written using the short form,

service SomeService: XSomelInterface;

then it has an implicit constructor. The exact behavior of the implicit constructor is language-
binding—specific, but it is typically named create, takes no arguments besides the XComponent-
Context, and may only throw runtime exceptions.

71

72

Including Properties

When the structure of the OpenOffice.org API was founded, the designers discovered that the
objects in an office environment would have huge numbers of qualities that did not appear to be
part of the structure of the objects, rather they seemed to be superficial changes to the underlying
objects. It was also clear that not all qualities would be present in each object of a certain kind.
Therefore, instead of defining a complicated pedigree of optional and non-optional interfaces for
each and every quality, the concept of properties was introduced. Properties are data in an object
that are provided by name over a generic interface for property access, that contains getProper-
tyValue () and setPropertyValue () access methods. The concept of properties has other advan-
tages, and there is more to know about properties. Please refer to 3.3.4 Professional UNO - UNO
Concepts - Properties for further information about properties.

Old-style services can list supported properties directly in the UNOIDL specification. A property
defines a member variable with a specific type that is accessible at the implementing component by
a specific name. It is possible to add further restrictions to a property through additional flags.
The following old-style service references one interface and three optional properties. All known
API types can be valid property types:

// com.sun.star.text.TextContent
service TextContent

{
interface com::sun::star::text::XTextContent;
[optional, property] com::sun::star::text::TextContentAnchorType AnchorType;
[optional, readonly, property] sequence<com::sun::star::text::TextContentAnchorType> AnchorTypes;
[optional, property] com::sun::star::text::WrapTextMode TextWrap;

bi
Possible property flags are:

optional
The property does not have to be supported by the implementing component.

readonly
The value of the property cannot be changed using com.sun.star.beans.XPropertySet.

bound

Changes of property values are broadcast to
com.sun.star.beans.XPropertyChangeListeners, if any were registered through
com.sun.star.beans.XPropertySet.

constrained
The property broadcasts an event before its value changes. Listeners have the right to veto the
change.

maybeambiguous
Possibly the property value cannot be determined in some cases, for example, in multiple selec-
tions with different values.

maybedefault
The value might be stored in a style sheet or in the environment instead of the object itself.

maybevoid
In addition to the range of the property type, the value can be void. It is similar to a null value
in databases.

removable
The property is removable, this is used for dynamic properties.

transient

The property will not be stored if the object is serialized

OpenOffice.org 2.0 Developer's Guide « May 2005

Referencing other Services

Old-style services can include other old-style services. Such references may be optional. That a
service is included by another service has nothing to do with implementation inheritance, only the
specifications are combined. It is up to the implementer if he inherits or delegates the necessary
functionality, or if he implements it from scratch.

The old-style service com.sun.star.text.Paragraph in the following UNOIDL example includes
one mandatory service com.sun.star.text.TextContent and five optional services. Every Para-
graph must be a TextContent. It can be a TextTable and it is used to support formatting proper-

ties for paragraphs and characters:

// com.sun.star.text.Paragraph

service Paragraph

{
service com::sun::star::text::TextContent;
[optional] service com::sun::star::text::TextTable;
[optional] service com::sun::star::style::ParagraphProperties;
[optional] service com::sun::star::style::CharacterProperties;
[optional] service com::sun::star::style::CharacterPropertiesAsian;
[optional] service com::sun::star::style::CharacterPropertiesComplex;

}i

If all the old-style services in the example above were multiple-inheritance interface types instead,
the structure would be similar: the multiple-inheritance interface type Paragraph would inherit
the mandatory interface TextContent and the optional interfaces TextTable, ParagraphProper-
ties, etc.

Service Implementations in Components

A component is a shared library or Java archive containing implementations of one or more services
in one of the target programming languages supported by UNO. Such a component must meet
basic requirements, mostly different for the different target language, and it must support the spec-
ification of the implemented services. That means all specified interfaces and properties must be
implemented. Components must be registered in the UNO runtime system. After the registration
all implemented services can be used by ordering an instance of the service at the appropriate ser-
vice factory and accessing the functionality over interfaces.

Based on our example specifications for a Tvset and a RemoteControl service, a component Remo-
teTVImpl could simulate a remote TV system:

RemoteTV

<<component>>

: :
v v

Remote

TVSet
Cont
XStandby O— comicons ontrol —O XChannel

<<service>>

Hllustration 3.4: RemoteTVImpl Component

Such a RemoteTV component could be a jar file or a shared library. It would contain two service
implementations, TvVSet and RemoteControl. Once the RemoteTV component is registered with
the global service manager, users can call the factory method of the service manager and ask for a
TVSet or a RemoteControl service. Then they could use their functionality over the interfaces

73

XPower, XChannel and XStandby. When a new implementation of these services with better per-
formance or new features is available later on, the old component can be replaced without
breaking existing code, provided that the new features are introduced by adding interfaces.

Structs

A struct type defines several elements in a record. The elements of a struct are UNO types with
a unique name within the struct. Structs have the disadvantage not to encapsulate data, but the
absence of get () and set () methods can help to avoid the overhead of method calls over a UNO
bridge. UNO supports single inheritance for struct types. A derived struct recursively inherits
all elements of the parent and its parents.

// com.sun.star.lang.EventObject
/** specifies the base for all event objects and identifies the
source of the event.
*/
struct EventObject
{
/** refers to the object that fired the event.
*/

com: :sun::star::uno::XInterface Source;
bi

// com.sun.star.beans.PropertyChangeEvent
struct PropertyChangeEvent : com::sun::star::lang::EventObject {
string PropertyName;
boolean Further;
long PropertyHandle;
any OldvValue;
any NewValue;

i
A new feature of OpenOffice.org 2.0 is the polymorphic struct type. A polymorphic struct type tem-
plate is similar to a plain struct type, but it has one or more type parameters, and its members can

have these parameters as types. A polymorphic struct type template is not itself a UNO type—it
has to be instantiated with actual type arguments to be used as a type.

// A polymorphic struct type template with two type parameters:
struct Poly<T,U> ({

T memberl;

T member?2;

U member3;

long member4;
bi

// Using an instantiation of Poly as a UNO type:

interface XIfc { Poly<boolean, any> fn(); };

In the example, Poly<boolean, any> will be an instantiated polymorphic struct type with the
same form as the plain struct type

struct PolyBooleanAny {

boolean memberl;

boolean member2;

any member3;

long member4;
bi
Polymorphic struct types were added primarily to support rich interface type attributes that are as
expressive as maybeambiguous, maybedefault, Or maybevoid properties (see
com.sun.star.beans.Ambiguous, com.sun.star.beans.Defaulted,

com.sun.star.beans.Optional), but they are probably useful in other contexts, too.

74 OpenOffice.org 2.0 Developer's Guide « May 2005

Predefined Values

The API offers many predefined values, that are used as method parameters, or returned by
methods. In UNO IDL there are two different data types for predefined values: constants and
enumerations.

const

A const defines a named value of a valid UNO IDL type. The value depends on the specified type
and can be a literal (integer number, floating point number or a character), an identifier of another
const type or an arithmetic term using the operators: +, -, *, /, ~, &, |, %, ~, <<, >>.

Since a wide selection of types and values is possible in a const, const is occasionally used to build
bit vectors which encode combined values.

const short ID = 23;
const boolean ERROR = true;
const double PI = 3.1415;

Usually const definitions are part of a constants group.

constants

The constants type defines a named group of const values. A const in a constants group is
denoted by the group name and the const name. In the UNO IDL example below,
ImageAlign.RIGHT refers to the value 2:

constants ImageAlign {
const short LEFT = 0;
const short TOP = 1;
const short RIGHT = 2;
const short BOTTOM = 3;

enum

An enum type is equivalent to an enumeration type in C++. It contains an ordered list of one or
more identifiers representing long values of the enum type. By default, the values are numbered
sequentially, beginning with 0 and adding 1 for each new value. If an enum value has been
assigned a value, all following enum values without a predefined value get a value starting from
this assigned value.

// com.sun.star.uno.TypeClass
enum TypeClass {

VOID,

CHAR,

BOOLEAN,

BYTE,

SHORT,
}i

enum Error {
SYSTEM = 10, // value 10

RUNTIME, // value 11
FATAL, // value 12
USER = 30, // value 30
SOFT // value 31

bi

If enums are used during debugging, you should be able to derive the numeric value of an enum
by counting its position in the API reference. However, never use literal numeric values instead of
enums in your programs.

Once an enum type has been specified and published, you can trust that it is not extended later on, for that
would break existing code. However, new const vaues may be added to a constant group.

75

76

Sequences

A sequence type is a set of elements of the same type, that has a variable number of elements. In
UNO IDL, the used element always references an existing and known type or another sequence
type. A sequence can occur as a normal type in all other type definitions.

sequence< com::sun::star::uno::XInterface >
sequence< string > getNamesOfIndex(sequence< long > indexes);

Modules

Modules are namespaces, similar to namespaces in C++ or packages in Java. They group services,
interfaces, structs, exceptions, enums, typedefs, constant groups and submodules with related
functional content or behavior. They are utilized to specify coherent blocks in the API, this allows
for a well-structured API. For example, the module com.sun.star.text contains interfaces and
other types for text handling. Some other typical modules are com.sun.star.uno,
com.sun.star.drawing, com.sun.star.sheet and com.sun.star.table. Identifiers inside a
module do not clash with identifiers in other modules, therefore it is possible for the same name to
occur more than once. The global index of the API reference shows that this does happen.

Although it may seem that the modules correspond with the various parts of OpenOffice.org, there
is no direct relationship between the API modules and the OpenOffice.org applications Writer,
Calc and Draw. Interfaces from the module com.sun.star.text are used in Calc and Draw.
Modules like com.sun.star.style Or com.sun.star.document provide generic services and
interfaces that are not specific to any one part of OpenOffice.org.

The modules you see in the API reference were defined by nesting UNO IDL types in module
instructions. For example, the module com.sun.star.uno contains the interface xInterface:

module com {
module sun {
module star {
module uno {
interface XInterface {

Exceptions

An exception type indicates an error to the caller of a function. The type of an exception gives a
basic description of the kind of error that occurred. In addition, the UNO IDL exception types
contain elements which allow for an exact specification and a detailed description of the error. The
exception type supports inheritance, this is freqzuently used to define a hierarchy of errors.
Exceptions are only used to raise errors, not as method parameters or return types.

UNO IDL requires that all exceptions must inherit from com.sun.star.uno.Exception. This is a
precondition for the UNO runtime.

// com.sun.star.uno.Exception is the base exception for all exceptions
exception Exception {

string Message;

Xinterface Context;

bi

// com.sun.star.uno.RuntimeException is the base exception for serious problems
// occuring at runtime, usually programming errors or problems in the runtime environment
exception RuntimeException : com::sun::star::uno::Exception ({

bi

// com.sun.star.uno.SecurityException is a more specific RuntimeException
exception SecurityException : com::sun::star::uno::RuntimeException {

OpenOffice.org 2.0 Developer's Guide « May 2005

}i

Exceptions may only be thrown by operations which were specified to do so. In contrast,
com.sun.star.uno.RuntimeExceptions can always occur.

The methods acquire() and release of the UNO base interface com. sun.star.uno.XInterface are an
exception to the above rule. They are the only operations that may not even throw runtime exceptions. But
in Java and C++ programs, you do not use these methods directly, they are handled by the respective lan-
guage binding.

Singletons

Singletons are used to specify named objects where exactly one instance can exist in the life of a
UNO component context. A singleton references one interface type and specifies that the only
existing instance of this singleton can be reached over the component context using the name of the
singleton. If no instance of the singleton exists, the component context will instantiate a new one.
An example of such a new-style singleton is

module com { module sun { module star { module deployment ({

T?n?}et;c:n}t;hePackageManagerFactory: XPackageManagerFactory;

The various language bindings offer language-specific ways to obtain the instance of a new-style
singleton, given a component context. For example, in Java and C++ there is a static method (resp.
function) named get, that takes as its only argument an XComponentContext and returns the
(appropriately typed) singleton instance. If the instance cannot be obtained, a
com.sun.star.uno.DeploymentException is thrown.

There are also old-style singletons, which reference (old-style) services instead of interfaces. How -
ever, for old-style services, the language bindings offer no get functionality.

3.2.2 Understanding the API Reference

Specification, Implementation and Instances

The API specifications you find in the API reference are abstract. The service descriptions of the
API reference are not about classes that previously exist somewhere. The specifications are first,
then the UNO implementation is created according to the specification. That holds true even for
legacy implementations that had to be adapted to UNO.

Moreover, since a component developer is free to implement services and interfaces as required,
there is not necessarily a one-to-one relationship between a certain service specification and a real
object. The real object can be capable of more things than specified in a service definition. For
example, if you order a service at the factory or receive an object from a getter or getProperty-
vValue () method, the specified features will be present, but there may be additional features. For
instance, the text document model has a few interfaces which are not included in the specification
for the com.sun.star.text.TextDocument.

Because of the optional interfaces and properties, it is impossible to comprehend fully from the
API reference what a given instance of an object in OpenOffice.org is capable of. The optional
interfaces and properties are correct for an abstract specification, but it means that when you leave
the scope of mandatory interfaces and properties, the reference only defines how things are
allowed to work, not how they actually work.

77

78

Another important point is the fact that there are several entry points where object implementa -
tions are actually available. You cannot instantiate every old-style service that can be found in the
API reference by means of the global service manager. The reasons are:

Some old-style services need a certain context. For instance, it does not make sense to instan -
tiate a com.sun.star.text.TextFrame independently from an existing text document or any
other surrounding where it could be of any use. Such services are usually not created by the
global service manager, but by document factories which have the necessary knowledge to
create objects that work in a certain surrounding. That does not mean you will never be able to
get a text frame from the global service manager to insert. So, if you wish to use a service in the
API reference, ask yourself where you can get an instance that supports this service, and con-
sider the context in which you want to use it. If the context is a document, it is quite possible
that the document factory will be able to create the object.

Old-style services are not only used to specify possible class implementations. Sometimes they
are used to specify nothing but groups of properties that can be referenced by other old-style
services. That is, there are services with no interfaces at all. You cannot create such a service at
the service manager.

A few old-style services need special treatment. For example, you cannot ask the service man-

ager to create an instance of a com.sun.star.text.TextDocument. You must load it using the
method loadComponentFromUrl () at the desktop's com.sun.star.frame.XComponentLoader
interface.

In the first and the last case above, using multiple-inheritance interface types instead of old-style
services would have been the right design choice, but the mentioned services predate the avail-
ability of multiple-inheritance interface types in UNO.

Consequently, it is sometimes confusing to look up a needed functionality in the API reference, for
you need a basic understanding how a functionality works, which services are involved, where
they are available etc., before you can really utilize the reference. This manual aims at giving you
this understanding about the OpenOffice.org document models, the database integration and the
application itself.

Object Composition

Interfaces support single and multiple inheritance, and they are all based on
com.sun.star.uno.XInterface. In the API reference, this is mirrored in the Base Hierarchy section
of any interface specification. If you look up an interface, always check the base hierarchy section
to understand the full range of supported methods. For instance, if you look up
com.sun.star.text.XText, you see two methods, insertTextContent () and removeTextCon-
tent (), but there are nine more methods provided by the inherited interfaces. The same applies to
exceptions and sometimes also to structs, which support single inheritance as well.

The service specifications in the API reference can contain a section Included Services , which is
similar to the above in that a single included old-style service might encompass a whole world of
services. However, the fact that a service is included has nothing to do with class inheritance. In
which manner a service implementation technically includes other services, by inheriting from
base implementations, by aggregation, some other kind of delegation or simply by re-imple-
menting everything is by no means defined (which it is not, either, for UNO interface inheritance).
And it is uninteresting for an API user — he can absolutely rely on the availability of the described
functionality, but he must never rely on inner details of the implementation, which classes provide
the functionality, where they inherit from and what they delegate to other classes.

OpenOffice.org 2.0 Developer's Guide « May 2005

3.3 UNO Concepts

Now that you have an advanced understanding of OpenOffice.org API concepts and you under -
stand the specification of UNO objects, we are ready to explore UNO, i.e. to see how UNO objects
connect and communicate with each other.

3.3.1 UNO Interprocess Connections

UNO objects in different environments connect via the interprocess bridge. You can execute calls
on UNO object instances, that are located in a different process. This is done by converting the
method name and the arguments into a byte stream representation, and sending this package to
the remote process, for example, through a socket connection. Most of the examples in this manual
use the interprocess bridge to communicate with the OpenOffice.org.

This section deals with the creation of UNO interprocess connections using the UNO API.

Starting OpenOffice.org in Listening Mode

Most examples in this developers guide connect to a running OpenOffice.org and perform API
calls, which are then executed in OpenOffice.org. By default, the office does not listen on a
resource for security reasons. This makes it necessary to make OpenOffice.org listen on an inter-
process connection resource, for example, a socket. Currently this can be done in two ways:

Start the office with an additional parameter:
soffice -accept=socket,host=0,port=2002;urp;
This string has to be quoted on unix shells, because the semicolon ';' is interpreted by the shells

Place the same string without '-accept='into a configuration file. You can edit the file
<OfficePath>/share/registry/data/org/openoffice/Setup.xcu

and replace the tag

<prop oor:name="ooSetupConnectionURL"/>

with

<prop oor:name="ooSetupConnectionURL">
<value>socket,host=localhost,port=2002;urp;StarOffice.ServiceManager
</value>

</prop>

If the tag is not present, add it within the tag

<node oor:name="Office"/>

This change affects the whole installation. If you want to configure it for a certain user in a
network installation, add the same tag within the node <node oor:name="0ffice/> to the file
Setup.xcu in the user dependent configuration directory <OfficePath>/user/registry/data/org/ope-
noffice/

Choose the procedure that suits your requirements and launch OpenOffice.org in listening mode
now. Check if it is listening by calling netstat -a or -na on the command- line. An output similar to
the following shows that the office is listening;:

TCP <Hostname>:8100 <Fully qualified hostname>: 0 Listening

Ifyou use the -n option, netstat displays addresses and port numbers in numerical form. This is
sometimes useful on UNIX systems where it is possible to assign logical names to ports.

If the office is not listening, it probably was not started with the proper connection URL parameter.
Check the Setup.xcu file or your command- line for typing errors and try again.

79

80

Note: In versions before OpenOffice.org 1.1.0, there are several differences.

The configuration setting that makes the office listen everytime is located elsewhere. Open the file <Office-
Path>/share/config/registry/instance/org/openoffice/Setup.xml in an editor, and look for the element:

<ooSetupConnectionURL cfg:type="string"/>
Extend it with the following code:

<ooSetupConnectionURL cfg:type="string">
socket, port=2083;urp;
</ooSetupConnectionURL>

The commandline option -accept is ignored when there is a running instance of the office, including the
quick starter and the online help. If you use it, make sure that no soffice process runs on your system.

The various parts of the connection URL will be discussed in the next section.

Importing a UNO Object

The most common use case of interprocess connections is to import a reference to a UNO object
from an exporting server. For instance, most of the Java examples described in this manual retrieve
a reference to the OpenOffice.org ComponentContext. The correct way to do this is using the
com.sun.star.bridge.UnoUrlResolver service. Its main interface
com.sun.star.bridge.XUnoUrlResolver is defined in the following way:

interface XUnoUrlResolver: com::sun::star::uno::XInterface
{
/** resolves an object on the UNO URL */
com: :sun::star::uno::XInterface resolve([in] string sUnoUrl)
raises (com::sun::star::connection: :NoConnectException,
com: :sun::star::connection: :ConnectionSetupException,
com: :sun::star::lang::IllegalArgumentException) ;

bi

The string passed to the resolve () method is called a UNO URL. It must have the following
format:

UNO-Url

uno:connection-type,params;protocol-name,params;0ObjectName

I | ln IV

An example URL could be uno:socket,host=Ilocalhost,port=2002;urp;StarOffice.ServiceManager. The
parts of this URL are:

I. The URL schema uno:. This identifies the URL as UNO URL and distinguishes it from others,
such as http: or fip: URLs.

II. A string which characterizes the type of connection to be used to access the other process. Option-
ally, directly after this string, a comma separated list of name-value pairs can follow, where
name and value are separated by a '=". The currently supported connection types are described
in 3.3.1 Professional UNO - UNO Concepts - UNO Interprocess Connections - Opening a Connection.
The connection type specifies the transport mechanism used to transfer a byte stream, for
example, TCP/IP sockets or named pipes.

III. A string which characterizes the type of protocol used to communicate over the established byte
stream connection. The string can be followed by a comma separated list of name-value pairs,

OpenOffice.org 2.0 Developer's Guide « May 2005

which can be used to customize the protocol to specific needs. The suggested protocol is urp
(UNO Remote Protocol). Some useful parameters are explained below. Refer to the document
named UNO-URL at udk.openoffice.org. for the complete specification.

IV. A process must explicitly export a certain object by a distinct name. It is not possible to access
an arbitrary UNO object (which would be possible with IOR in CORBA, for instance).

The following example demonstrates how to import an object using the UnoUrlResolver: (Pro-
fUNO/InterprocessConn/UrlResolver.java):

XComponentContext xLocalContext =
com.sun.star.comp.helper.Bootstrap.createInitialComponentContext (null) ;

// initial serviceManager
XMultiComponentFactory xLocalServiceManager = xLocalContext.getServiceManager () ;

// create a URL resolver
Object urlResolver = xLocalServiceManager.createInstanceWithContext (
"com.sun.star.bridge.UnoUrlResolver", xLocalContext) ;

// query for the XUnoUrlResolver interface
XUnoUrlResolver xUrlResolver =
(XUnoUrlResolver) UnoRuntime.queryInterface (XUnoUrlResolver.class, urlResolver);

// Import the object
Object rInitialObject = xUrlResolver.resolve (
“uno:socket,host=localhost,port=2002;urp; StarOffice.ServiceManager”) ;

// XComponentContext

if (null != rInitialObject) {
System.out.println("initial object successfully retrieved");
I elser |

System.out.println("given initial-object name unknown at server side");

}
The usage of the UnoUrlResolver has certain disadvantages. You cannot:
be notified when the bridge terminates for whatever reasons
- close the underlying interprocess connection
- offer a local object as an initial object to the remote process

These issues are addressed by the underlying API, which is explained below. in 3.3.1 Professional
UNO - UNO Concepts - UNO Interprocess Connections - Opening a Connection.

Characteristics of the Interprocess Bridge

The whole bridge is threadsafe and allows multiple threads to execute remote calls. The dispatcher
thread inside the bridge cannot block because it never executes calls. It instead passes the requests
to worker threads.

- A synchronous call sends the request through the connection and lets the requesting thread wait
for the reply. All calls that have a return value, an out parameter, or throw an exceptions other
than a RuntimeException must be synchronous.

- An asynchronous (or oneway) call sends the request through the connection and immediately
returns without waiting for a reply. It is currently specified at the IDL interface if a request is
synchronous or asynchronous by using the [oneway] modifier.

Although there are no general problems with the specification and the implementation of the UNO oneway
feature, there are several API remote usage scenarios where oneway calls cause deadlocks in
OpenOffice.org. Therefore do not introduce new oneway methods with new OpenOffice.org UNO APIs.

For synchronous requests, thread identity is guaranteed . When process A calls process B, and pro-
cess B calls process A, the same thread waiting in process A will take over the new request. This

81

avoids deadlocks when the same mutex is locked again. For asynchronous requests, this is not
possible because there is no thread waiting in process A. Such requests are executed in a new
thread. The series of calls between two processes is guaranteed. If two asynchronous requests from
process A are sent to process B, the second request waits until the first request is finished.

Although the remote bridge supports asynchronous calls, this feature is disabled by default. Every
call is executed synchronously. The oneway flag of UNO interface methods is ignored. However,
the bridge can be started in a mode that enables the oneway feature and thus executes calls flagged
with the [oneway] modifier as asynchronous calls. To do this, the protocol part of the connection
string on both sides of the remote bridge must be extended by ', Negotiate=0,ForceSynchro-
nous=0'. For example:

v

soffice “-accept=socket,host=0,port=2002;urp,Negotiate=0,ForceSynchronous=0;"
for starting the office and

"uno:socket,host=localhost, port=2002;urp,Negotiate=0,ForceSynchronous=0; StarOffic
e.ServiceManager"

as UNO URL for connecting to it.

The asynchronous mode can cause deadlocks in OpenOffice.org. It is recommended not to activate it if one
side of the remote bridge is OpenOffice.org.

Opening a Connection

The method to import a UNO object using the UnoUrlResolver has drawbacks as described in the
previous chapter. The layer below the UnoUrlResolver offers full flexibility in interprocess con-
nection handling.

UNO interprocess bridges are established on the com.sun.star.connection.XConnection inter-
face, which encapsulates a reliable bidirectional byte stream connection (such as a TCP/IP connec-
tion).

interface XConnection: com::sun::star::uno::XInterface
{
long read([out] sequence < byte > aReadBytes , [in] long nBytesToRead)
raises(com::sun::star::io::IOException);
void write([in] sequence < byte > aData)
raises(com::sun::star::io::IOException);
void flush() raises(com::sun::star::io::IOException);
void close() raises(com::sun::star::io::IOException);
string getDescription () ;
bi

There are different mechanisms to establish an interprocess connection. Most of these mechanisms

follow a similar pattern. One process listens on a resource and waits for one or more processes to
connect to this resource.

This pattern has been abstracted by the services com.sun.star.connection.Acceptor that
exports the com.sun.star.connection.XAcceptor interface and
com.sun.star.connection.Connector that exports the com.sun.star.connection.XConnector
interface.

interface XAcceptor: com::sun::star::uno::XInterface
{
XConnection accept([in] string sConnectionDescription)
raises(AlreadyAcceptingException,
ConnectionSetupException,
com: :sun::star::lang::IllegalArgumentException) ;

void stopAccepting() ;
}i

interface XConnector: com::sun::star::uno::XInterface
{

XConnection connect([in] string sConnectionDescription

OpenOffice.org 2.0 Developer's Guide « May 2005

raises (NoConnectException,ConnectionSetupException);
}i
The acceptor service is used in the listening process while the connector service is used in the
actively connecting service. The methods accept () and connect () get the connection string as a
parameter. This is the connection part of the UNO URL (between uno: and ;urp).

The connection string consists of a connection type followed by a comma separated list of name-
value pairs. The following table shows the connection types that are supported by default.

Connection
type
socket Reliable TCP/IP socket connection
Parameter Description
host Hostname or IP number of the resource to listen on/connect. May be
localhost. In an acceptor string, this may be 0 ('host=0'), which means,
that it accepts on all available network interfaces.
port TCP/IP port number to listen on/connect to.
tcpNoDelay Corresponds to the socket option tcpNoDelay. For a UNO connection,
this parameter should be set to 1 (this is NOT the default —it must be
added explicitly). If the default is used (0), it may come to 200 ms de-
lays at certain call combinations.
pipe A named pipe (uses shared memory). This type of interprocess connection is marginally

faster than socket connections and works only if both processes are located on the same
machine. It does not work on Java by default, because Java does not support named pipes

directly
Parameter Description
name Name of the named pipe. Can only accept one process on name on one

machine at a time.

You can add more kinds of interprocess connections by implementing connector and acceptor services, and
choosing the service name by the scheme com.sun.star.connection.Connector.<connection-
type>, where <connection-type> is the name of the new connection type.

Ifyou implemented the service com.sun.star.connection.Connector.mytype, use the UnoUrlRe-
solver with the URL 'uno:mytype,param1l=foo;urp;StarOffice.ServiceManager' to establish the interprocess
connection to the office.

83

84

Creating the Bridge

XAcceptor XConnector
Acceptor e Connector ==
accept connect
stopAccepting stopAccepting
accept () i connect () :
D
|
1
\V4
. XConnection XInstanceProvider
Connection — InSta.nce ——
_ Provider
write () Xinterface getinstance ()
read ()
close () I
|
I
I getinstance ()
I
I
<Q XBridge V
Xlnterface getInstance () Stub
Bridge (for a local
XComponent object)
addEventListener ()
/'\ : removeEventListener ()
dispose ()
R
! [
I | getinstance ()
! i !
| createBridge () v
Bridge XBridgeFactory (for F;r?ex% e
Factory — 3
createBridge object)
(name, protocol,
connection, instanceProv)

getBridge (name)

Hllustration 3.5: The interaction of services that are needed to initiate a UNO interprocess bridge. The
interfaces have been simplified.

The XConnection instance can now be used to establish a UNO interprocess bridge on top of the
connection, regardless if the connection was established with a Connector or Acceptor service (or
another method). To do this, you must instantiate the service

com.sun.star.bridge.BridgeFactory. It supports the com.sun.star.bridge.xBridgeFactory
interface.

interface XBridgeFactory: com::sun::star::uno::XInterface
{
XBridge createBridge (
[in] string sName,
[in] string sProtocol ,
[in] com::sun::star::connection::XConnection aConnection ,
[in] XInstanceProvider anInstanceProvider)

raises (BridgeExistsException , com::sun::star::lang::IllegalArgumentException);
XBridge getBridge([in] string sName);
sequence < XBridge > getExistingBridges();

bi

The BridgeFactory service administrates all UNO interprocess connections. The createBridge ()
method creates a new bridge:

OpenOffice.org 2.0 Developer's Guide « May 2005

You can give the bridge a distinct name with the sName argument. Later the bridge can be
retrieved by using the getBridge () method with this name. This allows two independent code
pieces to share the same interprocess bridge. If you call createBridge () with the name of an
already working interprocess bridge, a BridgeExistsException is thrown. When you pass an
empty string, you always create a new anonymous bridge, which can never be retrieved by
getBridge () and which never throws a BridgeExistsException.

The second parameter specifies the protocol to be used on the connection. Currently, only the
'urp' protocol is supported. In the UNO URL, this string is separated by two ';'. The urp string
may be followed by a comma separated list of name-value pairs describing properties for the
bridge protocol. The urp specification can be found on udk.openoffice.org.

The third parameter is the xConnection interface as it was retrieved by Connector/Acceptor
service.

The fourth parameter is a UNO object, which supports the
com.sun.star.bridge.XInstanceProvider interface. This parameter may be a null reference
if you do not want to export a local object to the remote process.

interface XInstanceProvider: com::sun::star::uno::XInterface
{
com: :sun::star::uno::XInterface getInstance([in] string sInstanceName)
raises (com::sun::star::container::NoSuchElementException) ;

}i
The BridgeFactory returns a com.sun.star.bridge.XBridge interface.

interface XBridge: com::sun::star::uno::XInterface
{

XInterface getlInstance([in] string sInstanceName) ;

string getName () ;

string getDescription () ;
}i
The xBridge.getInstance () method retrieves an initial object from the remote counterpart. The
local xBridge.getInstance () call arrives in the remote process as an
XInstanceProvider.getInstance () call. The object returned can be controlled by the string
sInstanceName. It completely depends on the implementation of XxInstanceProvider, which

object it returns.

The xBridge interface can be queried for a com.sun.star.lang.XComponent interface, that adds a
com.sun.star.lang.XEventListener to the bridge. This listener will be terminated when the
underlying connection closes (see above). You can also call dispose () on the XComponent interface
explicitly, which closes the underlying connection and initiates the bridge shutdown procedure.

Closing a Connection
The closure of an interprocess connection can occur for the following reasons:

The bridge is not used anymore. The interprocess bridge will close the connection when all the
proxies to remote objects and all stubs to local objects have been released. This is the normal
way for a remote bridge to destroy itself. The user of the interprocess bridge does not need to
close the interprocess connection directly—it is done automatically. When one of the communi -
cating processes is implemented in Java, the closure of a bridge is delayed to that point in time
when the VM finalizes the last proxies/stubs. Therefore it is unspecified when the interprocess
bridge will be closed.

The interprocess bridge is directly disposed by calling its dispose () method.
The remote counterpart process crashes.

The connection fails. For example, failure may be due to a dialup internet connection going
down.

85

86

- An error in marshalling/unmarshalling occurs due to a bug in the interprocess bridge imple-
mentation, or an IDL type is not available in one of the processes.

Except for the first reason, all other connection closures initiate an interprocess bridge shutdown
procedure. All pending synchronous requests abort with a
com.sun.star.lang.DisposedException, which is derived from the
com.sun.star.uno.RuntimeException. Every call that is initiated on a disposed proxy throws a
DisposedException. After all threads have left the bridge (there may be a synchronous call from
the former remote counterpart in the process), the bridge explicitly releases all stubs to the original
objects in the local process, which were previously held by the former remote counterpart. The
bridge then notifies all registered listeners about the disposed state using
com.sun.star.lang.XEventListener. The example code for a connection-aware client below
shows how to use this mechanism. The bridge itself is destroyed, after the last proxy has been
released.

Unfortunately, the various listed error conditions are not distinguishable.

Example: A Connection Aware Client

The following example shows an advanced client which can be informed about the status of the
remote bridge. A complete example for a simple client is given in the chapter 2 First Steps.

The following Java example opens a small awt window containing the buttons new writer and
new calc that opens a new document and a status label. It connects to a running office when a
button is clicked for the first time. Therefore it uses the connector/bridge factory combination, and
registers itself as an event listener at the interprocess bridge.

When the office is terminated, the disposing event is terminated, and the Java program sets the text
in the status label to 'disconnected' and clears the office desktop reference. The next time a button
is pressed, the program knows that it has to re-establish the connection.

The method getComponentLoader () retrieves the XComponentLoader reference on demand:

(ProfUNO/InterprocessConn/ConnectionAwareClient.java)
XComponentLoader _officeComponentLoader = null;

// local component context
XComponentContext _ctx;

protected com.sun.star.frame.XComponentLoader getComponentLoader ()
throws com.sun.star.uno.Exception {

XComponentLoader officeComponentLoader = officeComponentLoader;
if (officeComponentLoader == null) {
// instantiate connector service
Object x = ctx.getServiceManager ().createInstanceWithContext (
"com.sun.star.connection.Connector", ctx);
XConnector xConnector = (XConnector) UnoRuntime.queryInterface (XConnector.class, Xx);

// helper function to parse the UNO URL into a string array
String a[] = parseUnoUrl(_url);
if (null == a) {
throw new com.sun.star.uno.Exception ("Couldn't parse UNO URL "+ _url);

}

// connect using the connection string part of the UNO URL only.
XConnection connection = xConnector.connect (a[0]);

X = _ctx.getServiceManager().createInstanceWithContext(
"com.sun.star.bridge.BridgeFactory", _ctx);

XBridgeFactory xBridgeFactory = (XBridgeFactory) UnoRuntime.queryInterface (
XBridgeFactory.class , x);

// create a nameless bridge with no instance provider
// using the middle part of the UNO URL
XBridge bridge = xBridgeFactory.createBridge("" , a[l] , connection , null);

OpenOffice.org 2.0 Developer's Guide « May 2005

// query for the XComponent interface and add this as event listener

XComponent xComponent = (XComponent) UnoRuntime.queryInterface (
XComponent.class, bridge);

xComponent .addEventListener (this) ;

// get the remote instance
x = bridge.getInstance(al[2]);

// Did the remote server export this object ?
if (null == x) {
throw new com.sun.star.uno.Exception (
"Server didn't provide an instance for" + a[2], null);

}

// Query the initial object for its main factory interface
XMultiComponentFactory xOfficeMultiComponentFactory = (XMultiComponentFactory)
UnoRuntime.queryInterface (XMultiComponentFactory.class, x);

// retrieve the component context (it's not yet exported from the office)
// Query for the XPropertySet interface.
XPropertySet xProperySet = (XPropertySet)
UnoRuntime.queryInterface (XPropertySet.class, xOfficeMultiComponentFactory) ;

// Get the default context from the office server.
Object oDefaultContext =
xProperySet.getPropertyValue ("DefaultContext") ;

// Query for the interface XComponentContext.
XComponentContext xOfficeComponentContext =
(XComponentContext) UnoRuntime.queryInterface (
XComponentContext.class, oDefaultContext);

// now create the desktop service

// NOTE: use the office component context here !

Object oDesktop = xOfficeMultiComponentFactory.createInstanceWithContext (
"com.sun.star.frame.Desktop", xOfficeComponentContext) ;

officeComponentLoader = (XComponentLoader)
UnoRuntime.queryInterface (XComponentLoader.class, oDesktop);

if (officeComponentLoader == null) ({
throw new com.sun.star.uno.Exception (
"Couldn't instantiate com.sun.star.frame.Desktop" , null);
}
_officeComponentLoader = officeComponentLoader;
}
return officeComponentLoader;

}

This is the button event handler:

public void actionPerformed (ActionEvent event) ({
try {

String sUrl;

if (event.getSource() == btnWriter) {
sUrl = "private:factory/swriter";

b elee {
sUrl = "private:factory/scalc";

}

getComponentLoader () . loadComponentFromURL (
sUrl, " blank", 0,new com.sun.star.beans.PropertyValue[0])

_txtLabel.setText ("connected") ;

} catch (com.sun.star.connection.NoConnectException exc) {
_txtLabel.setText (exc.getMessage());

} catch (com.sun.star.uno.Exception exc) {
_txtLabel.setText (exc.getMessage()) ;
exc.printStackTrace () ;
throw new java.lang.RuntimeException (exc.getMessage()) ;

}

And the disposing handler clears the officeComponentLoader reference:

public void disposing(com.sun.star.lang.EventObject event) ({
// remote bridge has gone down, because the office crashed or was terminated.
_officeComponentLoader = null;
_txtLabel.setText ("disconnected") ;

88

3.3.2 Service Manager and Component Context

This chapter discusses the root object for connections to OpenOffice.org (and to any UNO applica-
tion) — the service manager. The root object serves as the entry point for every UNO application
and is passed to every UNO component during instantiation.

Two different concepts to get the root object currently exist. StarOffice6.0 and OpenOffice.orgl.0
use the previous concept. Newer versions or product patches use the the newer concept and pro-
vide the previous concept for compatibility issues only. First we will look at the previous concept,
the service manager as it is used in the main parts of the underlying OpenOffice.org implementation
of this guide. Second, we will introduce the component context—which is the newer concept and
explain the migration path.

Service Manager

The com.sun.star.lang.ServiceManager is the main facfory in every UNO application. It instan-
tiates services by their service name, to enumerate all implementations of a certain service, and to
add or remove factories for a certain service at runtime. The service manager is passed to every
UNO component during instantiation.

XMultiServiceFactory Interface

The main interface of the service manager is the com.sun.star.lang.xMultiServiceFactory
interface. It offers three methods: createInstance (), createInstanceWithArguments () and
getAvailableServiceNames ().

interface XMultiServiceFactory: com::sun::star::uno::XInterface
{
com: :sun::star::uno::XInterface createInstance([in] string aServiceSpecifier
raises(com::sun::star::uno::Exception);

com: :sun::star::uno: :XInterface createInstanceWithArguments (
[in] string ServiceSpecifier,
[in] sequence<any> Arguments
raises(com::sun::star::uno::Exception);

sequence<string> getAvailableServiceNames () ;

createInstance () returns a default constructed service instance. The returned service is guar-
anteed to support at least all interfaces, which were specified for the requested servicename.
The returned XInterface reference can now be queried for the interfaces specified at the ser-
vice description.

When using the service name, the caller does not have any influence on which concrete imple-
mentation is instantiated. If multiple implementations for a service exist, the service manager is
free to decide which one to employ. This in general does not make a difference to the caller
because every implementation does fulfill the service contract. Performance or other details
may make a difference. So it is also possible to pass the implementation name instead of the ser-
vice name, but it is not advised to do so as the implementation name may change.

In case the service manager does not provide an implementation for a request, a null reference
is returned, so it is mandatory to check. Every UNO exception may be thrown during instantia-
tion. Some may be described in the specification of the service that is to be instantiated, for
instance, because of a misconfiguration of the concrete implementation. Another reason may be
the lack of a certain bridge, for instance the Java-C++ bridge, in case a Java component shall be
instantiated from C++ code.

createInstanceWithArguments () instantiates the service with additional parameters. A ser-
vice signals that it expects parameters during instantiation by supporting the

OpenOffice.org 2.0 Developer's Guide « May 2005

com.sun.star.lang.XInitialization interface. The service definition should describe the
meaning of each element of the sequence. There maybe services which can only be instantiated
with parameters.

- getAvailableServiceNames () returns every servicename the service manager does support.

XContentEnumerationAccess Interface

The com.sun.star.container.XContentEnumerationAccess interface allows the creation of an
enumeration of all implementations of a concrete servicename.

interface XContentEnumerationAccess: com::sun::star::uno::XInterface

{

com: :sun::star::container::XEnumeration createContentEnumeration([in] string aServiceName) ;
sequence<string> getAvailableServiceNames () ;
Yi

The createContentEnumeration () method returns a com.sun.star.container.XEnumeration
interface. Note that it may return an empty reference in case the enumeration is empty.

interface XEnumeration: com::sun::star::uno::XInterface

{

boolean hasMoreElements () ;

any nextElement ()
raises(com::sun::star::container: :NoSuchElementException,
com: :sun::star::lang: :WrappedTargetException) ;

}i

In the above case, the returned any of the method Xenumeration.nextElement () contains a
com.sun.star.lang.XSingleServiceFactory interface for each implementation of this specific
service. You can, for instance, iterate over all implementations of a certain service and check each
one for additional implemented services. The XSingleServiceFactory interface provides such a
method. With this method, you can instantiate a feature rich implementation of a service.

XSet Interface

The com.sun.star.container.XSet interface allows the insertion or removal of
com.sun.star.lang.XSingleServiceFactory Or
com.sun.star.lang.XSingleComponentFactory implementations to the service manager at run-
time without making the changes permanent. When the office application terminates, all the
changes are lost. The object must also support the com.sun.star.lang.XServicelInfo interface
that provides information about the implementation name and supported services of the compo-
nent implementation.

This feature may be of particular interest during the development phase. For instance, you can
connect to a running office, insert a new factory into the service manager and directly instantiate
the new service without having it registered before.

The chapter 4.9.6 Writing UNO Components - Deployment Options for Components - Special Service
Manager Configurations shows an example that demonstrates how a factory is inserted into the ser-
vice manager.

Component Context

The service manager was described above as the main factory that is passed to every new instanti-
ated component. Often a component needs more functionality or information that must be
exchangeable after deployment of an application. In this context, the service manager approach is
limited.

89

90

Therefore, the concept of the component context was created. In future, it will be the central object in
every UNO application. It is basically a read-only container offering named values. One of the
named values is the service manager. The component context is passed to a component during its
instantiation. This can be understood as an environment where components live (the relationship is
similar to shell environment variables and an executable program).

XComponentContext
ComponentContext
getValueByName ()
getServiceManager ()
other Service XMultiComponentFactory
Singletons Manager
<<singleton>> <<singleton>> createlnstanceWithContext ()

Hllustration 3.6: ComponentContext and the ServiceManager

ComponentContext API

The component context only supports the com.sun.star.uno.XComponentContext interface.

// module com::sun::star::uno
interface XComponentContext : XInterface

{

any getValueByName ([in] string Name) ;

com: :sun::star::lang: :XMultiComponentFactory getServiceManager () ;
i
The getvalueByName () method returns a named value. The getServiceManager () iSa conve-
nient way to retrieve the value named /singleton/com.sun.star.lang.theServiceManager. It
returns the ServiceManager singleton, because most components need to access the service man-

ager. The component context offers at least three kinds of named values:

Singletons (/singletons/...)
The singleton concept was introduced in 3.2.1 Professional UNO - API Concepts - Data Types. In
OpenOffice.org 1.0.2 there is only the ServiceManager singleton. From OpenOffice.org 1.1.0, a
singleton /singletons/com.sun.star.util.theMacroExpander has been added, which can
be used to expand macros in configuration files. Other possible singletons can be found in the
IDL reference.

Implementation properties (not yet defined)
These properties customize a certain implementation and are specified in the module descrip-
tion of each component. A module description is an xml-based description of a module (DLL or
jar file) which contains the formal description of one or more components.

Service properties (not yet defined)
These properties can customize a certain service independent from the implementation and are
specified in the IDL specification of a service.
Note that service context properties are different from service properties. Service context prop -
erties are not subject to change and are the same for every instance of the service that shares the
same component context. Service properties are different for each instance and can be changed
at runtime through the xPropertyset interface.

OpenOffice.org 2.0 Developer's Guide « May 2005

Note, that in the scheme above, the ComponentContext has a reference to the service manager, but
not conversely.

Besides the interfaces discussed above, the ServiceManager supports the
com.sun.star.lang.xXMultiComponentFactory interface.

interface XMultiComponentFactory : com::sun::star::uno::XInterface
{
com: :sun::star::uno: :XInterface createInstanceWithContext (
[in] string aServiceSpecifier,
[in] com::sun::star::uno::XComponentContext Context)
raises (com::sun::star::uno::Exception);

com: :sun::star::uno: :XInterface createlnstanceWithArgumentsAndContext (
[in] string ServiceSpecifier,
[in] sequence<any> Arguments,
[in] com::sun::star::uno::XComponentContext Context)
raises (com::sun::star::uno::Exception);

sequence< string > getAvailableServiceNames () ;
}i
It replaces the xMultiServiceFactory interface. It has an additional XComponentContext param -
eter for the two object creation methods. This parameter enables the caller to define the component
context that the new instance of the component receives. Most components use their initial compo -
nent context to instantiate new components. This allows for context propagation.

createlnstanceWithContext
(C1)

createlnstanceWithContext
(C1)

Instance B
Ctx C1

getsContext ()
>C1

Instance D
Ctx C1

creates a new Context
(ontop of C1)
> (2

Instance A
Ctx C2

createlnstanceWithContext
(C2)

createlnstanceWithContext
(€2)

Hlustration 3.7: Context propagation.

The illustration above shows the context propagation. A user might want a special component to
get a customized context. Therefore, the user creates a new context by simply wrapping an existing
one. The user overrides the desired values and delegates the properties that he is not interested
into the original C1 context.The user defines which context Instance A and Breceive. Instance A
and B propagate their context to every new object that they create. Thus, the user has established
two instance trees, the first tree completely uses the context Ctx C1, while the second tree uses Ctx
C2.

91

92

Availability

The final API for the component context is available in StarOffice 6.0 and OpenOffice 1.0. Use this
API instead of the API explained in the service manager section. Currently the component context
does not have a persistent storage, so named values can not be added to the context of a deployed
OpenOffice.org. Presently, there is no additional benefit from the new API until there is a future
release.

Compatibility Issues and Migration Path

XComponentContext
ComponentContext O p

getValueByName ()
getServiceManager ()

ServiceManager —O XMultiServiceFactroy

DefaultContext —O XMultiComponentFactroy

Hllustration 3.8Compromise between service-manger-only und component context
concept

As discussed previously, both concepts are currently used within the office. The serviceManager
supports the interfaces com.sun.star.lang.XMultiServiceFactory and
com.sun.star.lang.XMultiComponentFactory. Calls to the XMultiServiceFactory interface
are delegated to the XMultiComponentFactory interface. The service manager uses its own XCom-
ponentContext reference to fill the missing parameter. The component context of the ServiceM-
anager can be retrieved through the XPropertysSet interface as 'DefaultContext'.

// Query for the XPropertySet interface.
// Note xOfficeServiceManager is the object retrieved by the
// UNO URL resolver
XPropertySet xPropertySet = (XPropertySet)
UnoRuntime.queryInterface (XPropertySet.class, xOfficeServiceManager) ;

// Get the default context from the office server.
Object oDefaultContext = xpropertysetMultiComponentFactory.getPropertyValue ("DefaultContext") ;

// Query for the interface XComponentContext.
xComponentContext = (XComponentContext) UnoRuntime.queryInterface (
XComponentContext.class, objectDefaultContext);

This solution allows the use of the same service manager instance, regardless if it uses the old or

new style API. In future, the whole OpenOffice.org code will only use the new API. However, the
old API will still remain to ensure compatibility.

The described compromise has a drawback. The service manager now knows the component context, that
was not necessary in the original design. Thus, every component that uses the old API (plain createIn-
stance ()) breaks the context propagation (see Illustration 3.2). Therefore, it is recommended to use the
new API in every new piece of code that is written.

3.3.3 Using UNO Interfaces

Every UNO object must inherit from the interface com.sun.star.uno.xInterface. Before using
an object, know how to use it and how long it will function. By prescribing xInterface to be the

OpenOffice.org 2.0 Developer's Guide « May 2005

base interface for each and every UNO interface, UNO lays the groundwork for object communica-
tion. For historic reasons, the UNOIDL description of xInterface lists the functionality that is
associated with xInterface in the C++ (or binary UNO) language binding; other language bind -
ings offer similar functionality by different mechanisms:

// module com::sun::star::uno
interface XInterface

{

any queryInterface([in] type aType);

[oneway] void acquire();

[oneway] void release() ;
bi
The methods acquire () and release () handle the lifetime of the UNO object by reference
counting. Detailed information about Reference counting is discussed in chapter 3.3.8 Professional
UNO - UNO Concepts - Lifetime of UNO Objects. All current language bindings take care of

acquire () and release () internally whenever there is a reference to a UNO object.

The queryInterface () method obtains other interfaces exported by the object. The caller asks the
implementation of the object if it supports the interface specified by the type argument. The type
parameter must denote a UNO interface type. The call may return with an interface reference of
the requested type or with a void any. In C++ or Java simply test if the result is not equal null.

Unknowingly, we encountered XInterface when the service manager was asked to create a ser-
vice instance:

XComponentContext xLocalContext =
com.sun.star.comp.helper.Bootstrap.createInitialComponentContext (null) ;

// initial serviceManager
XMultiComponentFactory xLocalServiceManager = xLocalContext.getServiceManager () ;

// create a urlresolver
Object urlResolver = xLocalServiceManager.createInstanceWithContext (
"com.sun.star.bridge.UnoUrlResolver", xLocalContext) ;

The IDL specification of XMultiComponentFactory shows:

// module com::sun::star::lang
interface XMultiComponentFactory : com::sun::star::uno::XInterface
{
com: :sun::star::uno: :XInterface createInstanceWithContext (
[in] string aServiceSpecifier,
[in] com::sun::star::uno: :XComponentContext Context)
raises (com::sun::star::uno::Exception) ;

}

The above code shows that createInstanceWithContext () provides an instance of the given
service, but it only returns a com.sun.star.uno.xXInterface. This is mapped to java.lang.Object
by the Java UNO binding afterwards.

In order to access a service, you need to know which interfaces the service exports. This informa -
tion is available in the IDL reference. For instance, for the
com.sun.star.bridge.UnoUrlResolver service, you learn:

// module com::sun::star::bridge
service UnoUrlResolver: XUnoUrlResolver;

This means the service you ordered at the service manager must support
com.sun.star.bridge.XUnoUrlResolver. Next query the returned object for this interface:

// query urlResolver for its com.sun.star.bridge.XUnoUrlResolver interface
XUnoUrlResolver xUrlResolver = (XUnoUrlResolver)
UnoRuntime.queryInterface (UnoUrlResolver.class, urlResolver);

// test if the interface was available
if (null == xUrlResolver) {
throw new java.lang.Exception (
“Error: UrlResolver service does not export XUnoUrlResolver interface”);
}
// use the interface
Object remoteObject = xUrlResolver.resolve (
“uno:socket,host=0,port=2002;urp;StarOffice.ServiceManager”) ;

93

94

For a new-style service like com.sun.star.bridge.UnoUrlResolver, there is a superior way to obtain
an instance of it, see 3.4.1 Professional UNO - UNO Language Bindings - Java Language Binding - Type Mappings
- Mapping of Services and 3.4.2 Professional UNO - UNO Language Bindings - C++ Language Binding - Type
Mappings - Mapping of Services.

The object decides whether or not it returns the interface. You have encountered a bug if the object
does not return an interface that is specified to be mandatory in a service. When the interface refer-
ence is retrieved, invoke a call on the reference according to the interface specification. You can
follow this strategy with every service you instantiate at a service manager, leading to success.

With this method, you may not only get UNO objects through the service manager, but also by
normal interface calls:

// Module com::sun::star::text
interface XTextRange: com::sun::star::uno::XInterface
{

XText getText ()

XTextRange getStart();

bi

The returned interface types are specified in the operations, so that calls can be invoked directly on
the returned interface. Often, an object implementing multiple interfaces are returned, instead of
an object implementing one certain interface.

You can then query the returned object for the other interfaces specified in the given old-style ser-
vice, here com.sun.star.drawing.Text.

UNO has a number of generic interfaces. For example, the interface
com.sun.star.frame.XComponentLoader:

// module com::sun::star::frame
interface XComponentLoader: com::sun::star::uno::XInterface
{
com: :sun::star::lang: :XComponent loadComponentFromURL([in] string aURL,
[in] string aTargetFrameName,
[in] long nSearchFlags,
[in] sequence<com::sun::star::beans::PropertyValue> aArgs
raises(com::sun::star::io::IOException,
com: :sun::star::lang::IllegalArgumentException);
bi
It becomes difficult to find which interfaces are supported beside XComponent, because the kind of

returned document (text, calc, draw, etc.) depends on the incoming URL.
These dependencies are described in the appropriate chapters of this manual.

Tools such as the TnstanceInspector component is a quick method to find out which interfaces a
certain object supports. The InstanceInspector component comes with the OpenOffice.org SDK
that allows the inspection of a certain object at runtime. Do not rely on implementation details of
certain objects. If an object supports more interfaces than specified in the service description, query
the interface and perform calls. The code may only work for this distinct office version and not
work with an update of the office!

Unfortunately, there may still be bugs in the service specifications. Please provide feedback about missing
interfaces to openoffice.orgto ensure that the specification is fixed and that you can rely on the support of this
interface.

There are certain specifications a queryInterface () implementation must not violate:

If queryInterface () on a specific object returned a valid interface reference for a given type, it
must return a valid reference for any successive queryInterface () calls on this object for the
same type.

OpenOffice.org 2.0 Developer's Guide « May 2005

- IfqueryInterface () on a specific object returned a null reference for a given type, it must
always return a null reference for the same type.

If queryInterface () on reference A returns reference B, queryInterface () on Bfor Type A
must return interface reference A or calls made on the returned reference must be equivalent to
calls made on reference A.

If queryInterface () on a reference A returns reference B, queryInterface () on A and B for
XlInterface must return the same interface reference (object identity).

These specifications must not be violated because a UNO runtime environment may choose to
cache queryInterface () calls. The rules are basically identical to the rules of QueryInterface in
MS COM.

3.3.4 Properties

Properties are name-value pairs belonging to a service and determine the characteristics of an ob-
ject in a service instance. Usually, properties are used for non-structural attributes, such as font,
size or color of objects, whereas get and set methods are used for structural attributes like a parent
or sub-object.

In almost all cases, com.sun.star.beans.XPropertySet is used to access properties by name.
Other interfaces, for example, are com.sun.star.beans.XPropertyAccess which is used to set
and retrieve all properties at once or com.sun.star.beans.XMultiPropertySet which is used to
access several specified properties at once. This is useful on remote connections. Additionally,
there are interfaces to access properties by numeric ID, such as
com.sun.star.beans.XFastPropertySet.

The following example demonstrates how to query and change the properties of a given text docu-
ment cursor using its XxPropertySet interface:

// get an XPropertySet, here the one of a text cursor
XPropertySet xCursorProps = (XPropertySet)
UnoRuntime.queryInterface (XPropertySet.class, mxDocCursor) ;

// get the character weight property

Object aCharWeight = xCursorProps.getPropertyValue ("CharWeight") ;
float fCharWeight = AnyConverter.toFloat (aCharWeight) ;
System.out.println ("before: CharWeight=" + fCharWeight) ;

// set the character weight property to BOLD
xCursorProps.setPropertyValue ("CharWeight", new Float (com.sun.star.awt.FontWeight.BOLD)) ;

// get the character weight property again

aCharWeight = xCursorProps.getPropertyValue ("CharWeight") ;
fCharWeight = AnyConverter.toFloat (aCharWeight) ;
System.out.println("after: CharWeight=" + fCharWeight);

A possible output of this code could be:

before: CharWeight=100.0
after: CharWeight=150.0

The sequence of property names must be sorted.

The following example deals with multiple properties at once:

// get an XMultiPropertySet, here the one of the first paragraph

XEnumerationAccess xEnumAcc = (XEnumerationAccess) UnoRuntime.queryInterface (
XEnumerationAccess.class, mxDocText);

XEnumeration xEnum = xEnumAcc.createEnumeration();

Object aPara = xEnum.nextElement () ;

XMultiPropertySet xParaProps = (XMultiPropertySet) UnoRuntime.queryInterface (
XMultiPropertySet.class, aPara);

// get three property values with a single UNO call

95

96

String[] aNames = new String[3];

aNames [0] = "CharColor";

aNames[1l] = "CharFontName";

aNames [2] = "CharWeight";

Object[] aValues = xParaProps.getPropertyValues (aNames) ;

// print the three values

System.out.println("CharColor=" + AnyConverter.tolLong(aValues[0]))

System.out.println ("CharFontName=" + AnyConverter.toString(aValues[1l]));

System.out.println ("CharWeight=" + AnyConverter.toFloat (aValues[2]));

Properties can be assigned flags to determine a specific behavior of the property, such as read-
only, bound, constrained or void. Possible flags are specified in
com.sun.star.beans.PropertyAttribute. Read-only properties cannot be set. Bound properties
broadcast changes of their value to registered listeners and constrained properties veto changes to

these listeners.

Properties might have a status specifying where the value comes from. See
com.sun.star.beans.XPropertyState. The value determines if the value comes from the object,
a style sheet or if it cannot be determined at all. For example, in a multi-selection with multiple
values within this selection.

The following example shows how to find out status information about property values:

// get an XPropertySet, here the one of a text cursor
XPropertySet xCursorProps = (XPropertySet) UnoRuntime.queryInterface (
XPropertySet.class, mxDocCursor);

// insert “first” in NORMAL character weight
mxDocText.insertString (mxDocCursor, "first ", true);
xCursorProps.setPropertyValue ("CharWeight", new Float (com.sun.star.awt.FontWeight.NORMAL)) ;

// append “second” in BODL characer weight

mxDocCursor.collapseToEnd() ;

mxDocText.insertString (mxDocCursor, "second", true);

xCursorProps.setPropertyValue ("CharWeight", new Float (com.sun.star.awt.FontWeight.BOLD)) ;

// try to get the character weight property of BOTH words
mxDocCursor.gotoStart (true) ;
try {
Object aCharWeight = xCursorProps.getPropertyValue ("CharWeight") ;
float fCharWeight = AnyConverter.toFloat (aCharWeight);
System.out.println ("CharWeight=" + fCharWeight) ;
} catch (NullPointerException e) {
System.out.println ("CharWeight property is NULL") ;
}

// query the XPropertState interface of the cursor properties
XPropertyState xCursorPropsState = (XPropertyState) UnoRuntime.queryInterface (
XPropertyState.class, xCursorProps);

// get the status of the character weight property
PropertyState eCharWeightState = xCursorPropsState.getPropertyState ("CharWeight") ;
System.out.print ("CharWeight property state has ");
if (eCharWeightState == PropertyState.AMBIGUOUS_ VALUE)
System.out.println("an ambiguous value");
else
System.out.println("a clear value");

The property state of character weight is queried for a string like this:
first second

And the output is:

CharWeight property is NULL

CharWeight property state has an ambiguous value

The description of properties available for a certain object is given by
com.sun.star.beans.XPropertySetInfo. Multiple objects can share the same property informa-
tion for their description. This makes it easier for introspective caches that are used in scripting
languages where the properties are accessed directly, without directly calling the methods of the
interfaces mentioned above.

This example shows how to find out which properties an object provides using
com.sun.star.beans.XPropertySetInfo:

OpenOffice.org 2.0 Developer's Guide « May 2005

try {
// get an XPropertySet, here the one of a text cursor
XPropertySet xCursorProps = (XPropertySet)UnoRuntime.queryInterface (
XPropertySet.class, mxDocCursor) ;

// get the property info interface of this XPropertySet
XPropertySetInfo xCursorPropsInfo = xCursorProps.getPropertySetInfo ()

// get all properties (NOT the values) from XPropertySetInfo
Property[] aProps = xCursorPropsInfo.getProperties();
int i;
for (i = 0; 1 < aProps.length; ++i) {
// number of property within this info object
System.out.print ("Property #" + 1i);

// name of property
System.out.print (": Name<" + aProps[i].Name) ;

// handle of property (only for XFastPropertySet)
System.out.print ("> Handle<" + aProps[i].Handle);

// type of property
System.out.print ("> " + aProps[i].Type.toString());

// attributes (flags)
System.out.print (" Attributes<");
short nAttribs = aProps[i].Attributes;

if ((nAttribs & PropertyAttribute.MAYBEVOID) != 0)
System.out.print ("MAYBEVOID|") ;

if ((nAttribs & PropertyAttribute.BOUND) != 0)

System.out.print ("BOUND|") ;

if ((nAttribs & PropertyAttribute.CONSTRAINED) != 0)
System.out.print ("CONSTRAINED|") ;

if ((nAttribs & PropertyAttribute.READONLY) != 0)
System.out.print ("READONLY | ") ;

if ((nAttribs & PropertyAttribute.TRANSIENT) != 0)
System.out.print ("TRANSIENT|") ;

if ((nAttribs & PropertyAttribute.MAYBEAMBIGUOUS) != 0)
System.out.print ("MAYBEAMBIGUOUS|") ;

if ((nAttribs & PropertyAttribute.MAYBEDEFAULT) != 0)
System.out.print ("MAYBEDEFAULT |") ;

if ((nAttribs & PropertyAttribute.REMOVEABLE) != 0)

System.out.print ("REMOVEABLE | ") ;
System.out.println ("0>") ;
}
} catch (Exception e) {
// If anything goes wrong, give the user a stack trace
e.printStackTrace (System.out) ;

}

The following is an example output for the code above. The output shows the names of the text
cursor properties, and their handle, type and property attributes. The handle is not unique, since
the specific object does not implement com.sun.star.beans.XFastPropertySet, so proper handles are
not needed here.

Using default connect string: socket,host=localhost,port=8100

Opening an empty Writer document

Property #0: Name<BorderDistance> Handle<93> Type<long> Attributes<MAYBEVOID|O0>

Property #1: Name<BottomBorder> Handle<93> Type<com.sun.star.table.BorderLine> Attributes<MAYBEVOID|O0>

Property #2: Name<BottomBorderDistance> Handle<93> Type<long> Attributes<MAYBEVOID|0>
Property #3: Name<BreakType> Handle<81> Type<com.sun.star.style.BreakType> Attributes<MAYBEVOID|O0>

Property #133: Name<TopBorderDistance> Handle<93> Type<long> Attributes<MAYBEVOID|O0>
Property #134: Name<UnvisitedCharStyleName> Handle<38> =Type<string> Attributes<MAYBEVOID|O0>
Property #135: Name<VisitedCharStyleName> Handle<38> Type<string> Attributes<MAYBEVOID|O0>

In some cases properties are used to specify the options in a sequence of
com.sun.star.beans.PropertyValue. See com.sun.star.view.PrintOptions or
com.sun.star.document.MediaDescriptor for examples properties in sequences. These are not

accessed by the methods mentioned above, but by accessing the sequence specified in the language
binding.

This example illustrates how to deal with sequences of property values:

// create a sequence of PropertyValue
PropertyValue[] aArgs = new PropertyValue[2];

// set name/value pairs (other fields are irrelevant here)

aArgs[0] = new PropertyValue() ;
aArgs[0] .Name = "FilterName";

97

aArgs[0].Value = "HTML (StarWriter)";
aArgs[1l] = new PropertyValue();
aArgs[l] .Name = "Overwrite";

aArgs[1l] .Value = Boolean.TRUE;

// use this sequence of PropertyValue as an argument

// where a service with properties but witouth any interfaces is specified

com.sun.star.frame.XStorable xStorable = (com.sun.star.frame.XStorable) UnoRuntime.queryInterface (
com.sun.star.frame.XStorable.class, mxDoc) ;

xStorable.storeAsURL ("file:///tmp/devmanual-test.html", aArgs);

Usually the properties supported by an object, as well as their type and flags are fixed over the life-

time of the object. There may be exceptions. If the properties can be added and removed externally,

the interface com.sun.star.beans.XPropertyContainer has to be used. In this case, the fixed

com.sun.star.beans.XPropertySetInfo changes its supplied information over the lifetime of

the object. Listeners for such changes can register at

com.sun.star.beans.XPropertyChangelListener.

If you use a component from other processes or remotely, try to adhere to the rule to use
com.sun.star.beans.XPropertyAccess and com.sun.star.beans.XMultiPropertySet instead
of having a separate call for each single property.

Lt

The following diagram shows the relationship between the property-related interfaces.

XPropertyChangelistener

Application ;
e 5 S S e XPropertyStateChangeListener

XPropertySetinfoChangelistener

Property
Setinfo
ChangeEvent

<<struct>>

>

P—-—

Property I Property —O XPropertySetinfo
<<struct>> —. Setinfo
<<service>> XPropertySetinfoChangeNotifier

\4

—O XPropertySet
PropertyState Property
ChangeEvent ChangeEvent XFastPropertySet
<<struct>> <<struct>> ProPerty
Set XMultiPropertySet
<<sarvice>>
/|\ /u\ XPropertyAccess

o Iy S

XPropertyState

Hllustration 3.9: Properties

Starting with OpenOffice.org 2.0, interface attributes are comparable in expressiveness to the prop -
erties described above:

A [property] T P (with type T and name P) corresponds to an [attribute] T P.

98 OpenOffice.org 2.0 Developer's Guide « May 2005

A [property, readonly] T P corresponds to an [attribute, readonly] T P.
A [property, bound] T P corresponds to an [attribute, bound] T P.

A [property, maybeambiguous] T P corresponds to an [attribute]
com.sun.star.beans.Ambiguous<T> P.

A [property, maybedefault] T P corresponds to an [attribute]
com.sun.star.beans.Defaulted<T> P.

A [property, maybevoid] T P corresponds to an [attribute]
com.sun.star.beans.Optional<T> P.

A [property, optionall] T P corresponds to an [attribute] T P { get raises
(com.sun.star.beans.UnknownPropertyException); set raises

(com.sun.star.beans.UnknownPropertyException); }.

A [property, constrained] T P corresponds to an [attribute] T P { set raises
(com.sun.star.beans.PropertyVetoException); }.

Interface attributes offer the following advantages compared to properties:

The attributes an object supports follows directly from the description of the interface types the
object supports.

Accessing an interface attribute is type-safe, whereas accessing a property uses the generic any.
This is an advantage mainly in statically typed languages like Java and C++, where accessing an
interface attribute typically also requires less code to be written than for accessing a generic
property.

The main disadvantage is that the set of interface attributes supported by an object is static, so that
scenarios that exploit the dynamic nature of xpropertySet, and so on, do not map well to inter-
face attributes. In cases where it might be useful to have all the interface attributes supported by an
object also accessible via xPropertySet etc., the Java and C++ language bindings offer experi-
mental, not yet published support to do just that.See www.openoffice.org to find out more.

3.3.5 Collections and Containers

Collections and containers are concepts for objects that contain multiple sub-objects where the
number of sub-objects is usually not predetermined. While the term collection is used when the sub-
objects are implicitly determined by the collection itself, the term container is used when it is pos-
sible to add new sub-objects and remove existing sub-objects explicitly. Thus, containers add
methods like insert () and remove () to the collection interfaces.

99

100

- _> ContainerEvent

-
] <<struct>>
]
]
. N\
|
: |
]
I . .
| .Appllcatu?n —O XContainerListener
I <<implementation>>
|
: i
|
! |
]
T) e e . s ‘% XContainer
XIndexContainer XNameContainer iXHierarchicalNameContainer
XindexReplace XNameReplace XHierarchicalNameReplace O XEnumeration
AN
}
|
XIndexAccess XNameAccess ? XHierarchicalNameAccess XEnumerationAccess

O XElementAccess

Hllustration 3.10: Interfaces in com.sun.star.container

In general, the OpenOffice.org API collection and container interfaces contain any type that can be
represented by the UNO type any. However, many container instances can be bound to a specific
type or subtypes of this type. This is a runtime and specification agreement, and cannot be checked
at runtime.

The base interface for collections is com.sun.star.container.xElementAccess that determines
the types of the sub-object, if they are determined by the collection, and the number of contained
sub-objects. Based on xElementAccess, there are three main types of collection interfaces:

com.sun.star.container.XIndexAccess
Offers direct access to the sub-objects by a subsequent numeric index beginning with 0.

com.sun.star.container.XNameAccess
Offers direct access to the sub-objects by a unique name for each sub object.

com.sun.star.container.XEnumerationAccess
Creates uni-directional iterators that enumerate all sub-objects in an undefined order.

com.sun.star.container.XIndexAccess is extended by
com.sun.star.container.XIndexReplace to replace existing sub-objects by index, and
com.sun.star.container.XIndexContainer to insert and remove sub-objects. You can find the
same similarity for com.sun.star.container.XNameAccess and other specific collection types.

OpenOffice.org 2.0 Developer's Guide « May 2005

All containers support com.sun.star.container.XContainer that has interfaces to register
com.sun.star.container.XContainerListener interfaces. This way it is possible for an applica-
tion to learn about insertion and removal of sub-objects in and from the container.

The com.sun.star.container.XIndexAccess is appealing to programmers because in most cases, it is
easy to implement. But this interface should only be implemented if the collection really is indexed.

Refer to the module com.sun.star.container in the API reference for details about collection
and container interfaces.

The following examples demonstrate the usage of the three main collection interfaces. First, we
iterate through an indexed collection. The index always starts with 0 and is continuous:

// get an XIndexAccess interface from the collection

XIndexAccess xIndexAccess = (XIndexAccess) UnoRuntime.queryInterface (

XIndexAccess.class, mxCollection);

// iterate through the collection by index

int i;

for (i = 0; i < xIndexAccess.getCount (); ++i) {
Object aSheet = xIndexAccess.getByIndex (i) ;
Named xSheetNamed = (XNamed) oRuntime.queryInterface (XNamed.class, aSheet);
System.out.println("sheet #" + i + " is named '" + xSheetNamed.getName() + "'");

}

Our next example iterates through a collection with named objects. The element names are unique
within the collection and case sensitive.

// get an XNameAccess interface from the collection
XNameAccess xNameAccess = (XNameAccess) UnoRuntime.queryInterface (XNameAccess.class, mxCollection) ;

// get the list of names
String[] aNames = xNameAccess.getElementNames () ;

// iterate through the collection by name
int i;
for (i = 0; i < aNames.length; ++i) {
// get the i-th object as a UNO Any
Object aSheet = xNameAccess.getByName (aNames[i]);

// get the name of the sheet from its XNamed interface
XNamed xSheetNamed = (XNamed) UnoRuntime.queryInterface (XNamed.class, aSheet);
System.out.println("sheet '" + aNames[i] + "' is #" + 1i);

}
The next example shows how we iterate through a collection using an enumerator. The order of the

enumeration is undefined. It is only defined that all elements are enumerated. The behavior is
undefined, if the collection is modified after creation of the enumerator.

// get an XEnumerationAccess interface from the collection
XEnumerationAccess xEnumerationAccess = (XEnumerationAccess) UnoRuntime.queryInterface (
XEnumerationAccess.class, mxCollection);

// create an enumerator
XEnumeration xEnum = xEnumerationAccess.createEnumeration();

// iterate through the collection by name
while (xEnum.hasMoreElements()) {
// get the next element as a UNO Any
Object aSheet = xEnum.nextElement () ;

// get the name of the sheet from its XNamed interface
XNamed xSheetNamed = (XNamed) UnoRuntime.queryInterface (XNamed.class, aSheet);
System.out.println("sheet '" + xSheetNamed.getName() + "'");

}

For an example showing the use of containers, see 7.4.1 Text Documents - Overall Document Features
- Styles where a new style is added into the style family paragraphStyles.

101

102

3.3.6 Event Model

Events are a well known concept in graphical user interface (GUI) models, although they can be
used in many contexts. The purpose of events is to notify an application about changes in the
components used by the application. In a GUI environment, for example, an event might be the
click on a button. Your application might be registered to this button and thus be able to execute
certain code when this button is clicked.

The OpenOffice.org event model is similar to the JavaBeans event model. Events in OpenOffice.org
are, for example, the creation or activation of a document, as well as the change of the current
selection within a view. Applications interested in these events can register handlers (listener inter-
faces) that are called when the event occurs. Usually these listeners are registered at the object
container where the event occurs or to the object itself. These listener interfaces are named
X...Listener.

listerier —O XEventListener

<<implementation>>
X...Listener

Special
EventObject _D EventObject

<<struct>> <<struct>>

/N /N

I
|
! Broadcaster —O X...Broadcaster

<<implementation>>

Poe=-—-—

XComponent

Hlustration 3.11

Event listeners are subclasses of com.sun.star.lang.XEventListener that receives one event by
itself, the deletion of the object to which the listener is registered. On this event, the listener has to
unregister from the object, otherwise it would keep it alive with its interface reference counter.

Important! Implement the method disposing () to unregister at the object you are listening to and release
all other references to this object.

Many event listeners can handle several events. If the events are generic, usually a single callback
method is used. Otherwise, multiple callback methods are used. These methods are called with at
least one argument: com.sun.star.lang.EventObject. This argument specifies the source of the
event, therefore, making it possible to register a single event listener to multiple objects and still
know where an event is coming from. Advanced listeners might get an extended version of this
event descriptor struct.

3.3.7 Exception Handling

UNO uses exceptions as a mechanism to propagate errors from the called method to the caller. This
error mechanism is preferred instead of error codes (as in MS COM) to allow a better separation of
the error handling code from the code logic. Furthermore, Java, C++ and other high-level program -

OpenOffice.org 2.0 Developer's Guide « May 2005

ming languages provide an exception handling mechanism, so that this can be mapped easily into
these languages.

In IDL, an exception is a structured container for data, comparable to IDL structs. Exceptions
cannot be passed as a return value or method argument, because the IDL compiler does not allow
this. They can be specified in raise clauses and transported in an any. There are two kinds of
exceptions, user-defined exceptions and runtime exceptions.

User-Defined Exceptions

The designer of an interface should declare exceptions for every possible error condition that might
occur. Different exceptions can be declared for different conditions to distinguish between dif-
ferent error conditions.

The implementation may throw the specified exceptions and exceptions derived from the specified
exceptions. The implementation must not throw unspecified exceptions, that is, the implementa -
tion must not throw an exception if no exception is specified. This applies to all exceptions except
for RuntimeExceptions, described later.

When a user-defined exception is thrown, the object should be left in the state it was in before the
call. If this cannot be guaranteed, then the exception specification must describe the state of the
object. Note that this is not recommended.

Every UNO IDL exception must be derived from com.sun.star.uno.Exception, whether directly
or indirectly. Its UNO IDL specification looks like this:

module com { module sun { module star { module uno {
exception Exception
{

string Message;

com: :sun: :star::uno: :XInterface Context;

}i
Yioobioiobi
The exception has two members:

- The message should contain a detailed readable description of the error (in English), which is
useful for debugging purposes, though it cannot be evaluated at runtime. There is currently no
concept of having localized error messages.

The Context member should contain the object that initially threw the exception.

The following .IDL file snippet shows a method with a proper exception specification and proper
documentation.

module com { module sun { module star { module beans {

interface XPropertySet: com::sun::star::uno::XInterface

{

/** @returns
the value of the property with the specified name.

@param PropertyName
This parameter specifies the name of the property.

@throws UnknownPropertyException
if the property does not exist.

@throws com::sun::star::uno::lang::WrappedTargetException
if the implementation has an internal reason for the
exception. In this case the original exception
is wrapped into that WrappedTargetException.

/)
any getPropertyValue([in] string PropertyName

raises(com::sun::star::beans::UnknownPropertyException,

com: :sun::star::lang: :WrappedTargetException) ;

103

104

[I A

Runtime Exceptions

Throwing a runtime exception signals an exceptional state. Runtime exceptions and exceptions
derived from runtime exceptions cannot be specified in the raise clause of interface methods in
IDL.

These are a few reasons for throwing a runtime exception are:
The connection of an underlying interprocess bridge has broken down during the call.

An already disposed object is called (see com.sun.star.lang.XComponent and the called ob-
ject cannot fulfill its specification because of its disposed state.

A method parameter was passed in an explicitly forbidden manner. For instance, a null inter-
face reference was passed as a method argument where the specification of the interface explic-
itly forbids this.

Every UNO call may throw a com.sun.star.uno.RuntimeException, except acquire and release.
This is independent of how many calls have been completed successfully. Every caller should
ensure that its own object is kept in a consistent state even if a call to another object replied with a
runtime exception. The caller should also ensure that no resource leaks occur in these cases. For
example, allocated memory, file descriptors, etc.

If a runtime exception occurs, the caller does not know if the call has been completed successfully
or not. The com.sun.star.uno.RuntimeException is derived from
com.sun.star.uno.Exception. Note, that in the Java UNO binding, the
com.sun.star.uno.Exception is derived from java.lang.Exception, while the
com.sun.star.uno.RuntimeException is directly derived from java.lang.RuntimeException.

A common misuse of the runtime exception is to reuse it for an exception that was forgotten
during interface specification. This should be avoided under all circumstances. Consider, defining
a new interface.

An exception should not be misused as a new kind of programming flow mechanism. It should
always be possible that during a session of a program, no exception is thrown. If this is not the
case, the interface design should be reviewed.

Good Exception Handling

This section provides tips on exception handling strategies. Under certain circumstances, the code
snippets we call bad below might make sense, but often they do not.

Do not throw exceptions with empty messages

Often, especially in C++ code where you generally do not have a stack trace, the message within
the exception is the only method that informs the caller about the reason and origin of the excep-
tion. The message is important, especially when the exception comes from a generic interface
where all kinds of UNO exceptions can be thrown.

When writing exceptions, put descriptive text into them. To transfer the text to another exception,
make sure to copy the text.

Do not catch exceptions without handling them

Many people write helper functions to simplify recurring coding tasks. However, often code will
be written like the following:

OpenOffice.org 2.0 Developer's Guide « May 2005

// Bad example for exception handling
public static void insertIntoCell (XPropertySet xPropertySet) {

[oool

try {

xPropertySet.setPropertyValue ("CharColor",new Integer (0));

} catch (Exception e) {

}
}
This code is ineffective, because the error is hidden. The caller will never know that an error has
occurred. This is fine as long as test programs are written or to try out certain aspects of the API
(although even test programs should be written correctly). Exceptions must be addressed because

the compiler can not perform correctly. In real applications, handle the exception.

The appropriate solution depends on the appropriate handling of exceptions. The following is the
minimum each programmer should do:

// During early development phase, this should be at least used instead
public static void insertIntoCell (XPropertySet xPropertySet) {
[ooo]
try {
xPropertySet.setPropertyValue ("CharColor",new Integer (0));
} catch (Exception e) {
e.dumpStackTrace () ;
}
}
The code above dumps the exception and its stack trace, so that a message about the occurrence of
the exception is received on stderr. This is acceptable during development phase, but it is insuffi-

cient for deployed code. Your customer does not watch the stderr window.

The level where the error can be handled must be determined. Sometimes, it would be better not to
catch the exception locally, but further up the exception chain. The user can then be informed of
the error through dialog boxes. Note that you can even specify exceptions on the main () function:

// this is how the final solution could look like
public static void insertIntoCell (XPropertySet xPropertySet) throws UnknownPropertyException,
PropertyVetoException, IllegalArgumentException, WrappedTargetException {

[...
xPropertySet.setPropertyValue ("CharColor",new Integer (0));

}

As a general rule, if you cannot recover from an exception in a helper function, let the caller deter-
mine the outcome. Note that you can even throw exceptions at the main () method.

3.3.8 Lifetime of UNO Objects

The UNO component model has a strong impact on the lifetime of UNO objects, in contrast to
CORBA, where object lifetime is completely unspecified. UNO uses the same mechanism as Micro-
soft COM by handling the lifetime of objects by reference counting.

Each UNO runtime environment defines its own specification on lifetime management. While in
C++ UNO, each object maintains its own reference count. Java UNO uses the normal Java garbage
collector mechanism. The UNO core of each runtime environment needs to ensure that it upholds
the semantics of reference counting towards other UNO environments.

The last paragraph of this chapter explains the differences between the lifetime of Java and C++
objects in detail.

acquire() and release()

Every UNO interface is derived from com.sun.star.uno.XInterface:
// module com::sun::star::uno

interface XInterface

{

105

106

any queryInterface([in] type aType);
[oneway] void acquire() ;
[oneway] void release();

bi

UNO objects must maintain an internal reference counter. Calling acquire () on a UNO interface
increases the reference count by one. Calling release () on UNO interfaces decreases the refer-
ence count by one. If the reference count drops to zero, the UNO object may be destroyed. Destruc-
tion of an object is sometimes called death of an object or that the object dies. The reference count of
an object must always be non-negative.

Once acquire () is called on the UNO object, there is a reference or a hard reference to the object, as
opposed to a weak reference. Calling release () on the object is often called releasing or clearing
the reference.

The UNO object does not export the state of the reference count, that is, acquire () and release ()
do not have return values. Generally, the UNO object should not make any assumptions on the
concrete value of the reference count, except for the transition from one to zero.

The invocation of a method is allowed first when acquire () has been called before. For every call
to acquire () , there must be a corresponding release call, otherwise the object leaks.

The UNO Java binding encapsulates acquire () and release () in the
UnoRuntime.queryInterface () call. The same applies to the Reference<> template in C++. As long
as the interface references are obtained through these mechanisms, acquire () and release () do not
have to be called in your programs.

The XComponent Interface

A central problem of reference counting systems is cyclic references. Assume Object A keeps a
reference on object Band B keeps a direct or indirect reference on object A. Even if all the external
references to A and B are released, the objects are not destroyed, which results in a resource leak.

<
A : B

Hllustration 3.12: Cyclic Reference

In general, a Java developer does not have to be concerned about this kind of issue, as the garbage collector
algorithm detects ring references. However, in the UNO world one never knows, whether object A and ob-
ject Breally live in the same Java virtual machine. If they do, the ring reference is really garbage collected. If
they do not, the object leaks, because the Java VM is not able to inspect the object outside of the VM for its
references.

In UNO, the developer must explicitly decide when to the break cyclic references. To support this
concept, the interface com.sun.star.lang.XComponent exists. When an XComponent is disposed
of, it can inform other objects that have expressed interest to be notified.

// within the module com::sun::star::lang
// when dispose() is called, previously added XEventListeners are notified
interface XComponent: com::sun::star::uno::XInterface
{
void dispose() ;
void addEventListener([in] XEventListener xListener);
void removeEventListener([in] XEventListener alListener);

}i

OpenOffice.org 2.0 Developer's Guide « May 2005

// An XEventListener is notified by calling its disposing() method
interface XEventListener: com::sun::star::uno::XInterface
{

void disposing([in] com::sun::star::lang::EventObject Source);

}i

Other objects can add themselves as com.sun.star.lang.XEventListener to an XComponent.
When the dispose () method is called, the object notifies all XEventListeners through the dis-
posing () method and releases all interface references, thus breaking the cyclic reference.

l

Hlustration 3.13: Object C calls dispose() on XComponent of Object B

0_

AL o

—O XComponent

>

dispose ()

A disposed object is unable to comply with its specification, so it is necessary to ensure that an
object is not disposed of before calling it. UNO uses an owner/user concept for this purpose. Only
the owner of an object is allowed to call dispose and there can only be one owner per object. The
owner is always free to dispose of the object. The user of an object knows that the object may be
disposed of at anytime. The user adds an event listener to discover when an object is being dis-
posed. When the user is notified, the user releases the interface reference to the object. In this case,
the user should not call removeEventListener (), because the disposed object releases the refer-
ence to the user.

One major problem of the owner/user concept is that there always must be someone who calls dispose ().
This must be considered at the design time of the services and interfaces, and be specified explicitly.

This solves the problem described above. However, there are a few conditions which still have to
be met.

107

108

C

Hllustration 3.14: B releases all interface references, which leads to destruction of Object A, which then
releases its reference to B, thus the cyclic reference is broken.

If an object is called while it is disposed of, it should behave passively. For instance, if removeLis-
tener () is called, the call should be ignored. If methods are called while the object is no longer
able to comply with its interface specification, it should throw a
com.sun.star.lang.DisposedException, derived from com.sun.star.uno.RuntimeException.
This is one of the rare situations in which an implementation should throw a RuntimeException.
The situation described above can always occur in a multithreaded environment, even if the caller
has added an event listener to avoid calling objects which were disposed of by the owner.

The owner/user concept may not always be appropriate, especially when there is more than one
possible owner. In these cases, there should be no owner but only users. In a multithreaded sce-
nario, dispose () might be called several times. The implementation of an object should be able to
cope with such a situation.

The xComponent implementation should always notify the disposing () listeners that the object is
being destroyed, not only when dispose () is called, but when the object is deleted. When the
object is deleted, the reference count of the object drops to zero. This may happen when the lis-
teners do not hold a reference on the broadcaster object.

The xComponent does not have to be implemented when there is only one owner and no further
users.

Children of the XEventListener Interface

The com.sun.star.lang.XEventListener interface is the base for all listener interfaces . This
means that not only xEventListeners, but every listener must implement disposing (), and
every broadcaster object that allows any kind of listener to register, must call disposing () on the
listeners as soon as it dies. However, not every broadcaster is forced to implement the XComponent
interface with the dispose() method, because it may define its own condition when it is disposed.

In a chain of broadcaster objects where every element is a listener of its predecessor and only the
root object is an xComponent that is being disposed, all the other chain links must handle the dis-
posing () call coming from their predecessor and call disposing () on their registered listeners.

OpenOffice.org 2.0 Developer's Guide « May 2005

Weak Objects and References

A strategy to avoid cyclic references is to use weak references. Having a weak reference to an object
means that you can reestablish a hard reference to the object again if the object still exists, and
there is another hard reference to it.

In the cyclic reference shown in illustration 3.4: RemoteTVImpl Component, object B could be speci-
fied to hold a hard reference on object A, but object A only keeps a weak reference to B. If object A
needs to invoke a method on B, it temporarily tries to make the reference hard. If this succeeds, it

invokes the method and releases the hard reference afterwards.

To be able to create a weak reference on an object, the object needs to support it explicitly by
exporting the com.sun.star.uno.xWeak interface. The illustration 3.5: The interaction of services that
are needed to initiate a UNO interprocess bridge. The interfaces have been simplified. depicts the UNO
mechanism for weak references.

When an object is assigned to a weak reference, the weak reference calls queryAdapter () at the
original object and adds itself (with the com.sun.star.uno.XReference interface) as reference to
the adapter.

XWeak .
— Object

queryAdapter ()

queryAdapter ()

<

XAdapter O Weak XReference
Adapter Reference —_—

queryAdapted () _O dispose ()

addReference ()
releaseReference ()

Hlustration 3.15: The UNO weak reference mechanism

When a hard reference is established from the weak reference, it calls the queryAdapted ()
method at the com.sun.star.uno.XAdapter interface of the adapter object. When the original
object is still alive, it gets a reference for it, otherwise a null reference is returned.

The adapter notifies the destruction of the original object to all weak references which breaks the
cyclic reference between the adapter and weak reference.

4 Writing UNO Components describes the helper classes in C++ and Java that implement a Xweak
interface and a weak reference.

Differences Between the Lifetime of C++ and Java Objects

Read 3.4.2 Professional UNO - UNO Language Bindings - C++ Language Binding and 3.4.1 Professional UNO -
UNO Language Bindings - Java Language Binding for information on language bindings, and 4.6 Writing UNO
Components - C++ Component and 4.5.6 Writing UNO Components - Simple Component in Java - Storing the Ser-
vice Manager for Further Use about component implementation before beginning this section.

109

110

The implementation of the reference count specification is different in Java UNO and C++ UNO. In
C++ UNO, every object maintains its own reference counter. When you implement a C++ UNO
object, instantiate it, acquire it and afterwards release it, the destructor of the object is called imme-
diately. The following example uses the standard helper class : :cppu: :OWeakObject and prints a
message when the destructor is called. (ProfUNO/Lifetime/object lifetime.cxx)

class MyOWeakObject : public ::cppu::0OWeakObject
{

public:
MyOWeakObject () { fprintf(stdout, "constructed\n"); }
~MyOWeakObject () { fprintf(stdout, "destroyed\n"); }

}i

The following method creates a new MyOWeakObject, acquires it and releases it for demonstration
purposes. The call to release () immediately leads to the destruction of MyOweakObject. If the
Reference<> template is used, you do not need to care about acquire () and release().

void simple object creation and destruction()

{

// create the UNO object
com: :sun::star::uno::XInterface * p = new MyOWeakObject () ;

// acquire it
p->acquire () ;

// releast it

fprintf (stdout, "before release\n");
p->release () ;
fprintf (stdout, "after release\n");

}
This piece of code produces the following output:

constructed
before release
destroyed
after release

Java UNO objects behave differently, because they are finalized by the garbage collector at a time
of its choosing. com.sun.star.uno.XInterface has no methods in the Java UNO language

binding, therefore no methods need to be implemented, although MyUnoObject implements
xInterface: (ProfUNO/Lifetime/MyUnoObject.java)

class MyUnoObject implements com.sun.star.uno.XInterface {

public MyUnoObject () {
}

void finalize () {
System.out.println("finalizer called");

}

static void main (String args[]) throws Jjava.lang.InterruptedException {
com.sun.star.uno.XInterface a = new MyUnoObject () ;
a = null;

// ask the garbage collector politely
System.gc () ;
System.runFinalization () ;

System.out.println("leaving") ;
// It is java VM dependent, whether or not the finalizer was called
}

The output of this code depends on the Java VM implementation. The output “finalizer called” is
not a usual result. Be aware of the side effects when UNO brings Java and C++ together.

When a UNO C++ object is mapped to Java, a Java proxy object is created that keeps a hard UNO
reference to the C++ object. The UNO core takes care of this. The Java proxy only clears the refer-
ence when it enters the finalize () method, thus the destruction of the C++ object is delayed until
the Java VM collects some garbage.

OpenOffice.org 2.0 Developer's Guide « May 2005

When a UNO Java object is mapped to C++, a C++ proxy object is created that keeps a hard UNO
reference to the Java object. Internally, the Java UNO bridge keeps a Java reference to the original
Java object. When the C++ proxy is no longer used, it is destroyed immediately. The Java UNO
bridge is notified and immediately frees the Java reference to the original Java object. When the
Java object is finalized is dependent on the garbage collector.

When a Java program is connected to a running OpenOffice.org, the UNO objects in the office
process are not destroyed until the garbage collector finalizes the Java proxies or until the interpro -
cess connection is closed (see 3.3.1 Professional UNO - UNO Concepts - UNO Interprocess Connec-
tions).

3.3.9 Object Identity

UNO guarantees if two object references are identical, that a check is performed and it always
leads to a correct result, whether it be true or false. This is different from CORBA, where a return
of false does not necessarily mean that the objects are different.

Every UNO runtime environment defines how this check should be performed. In Java UNO, there
is a static areSame () function at the com.sun.star.uno.UnoRuntime class. In C++, the check is
performed with the Reference<>::operator == () function that queries both references for
XInterface and compares the resulting xInterface pointers.

This has a direct effect in the API design. For instance, look at com.sun.star.lang.XComponent:

interface XComponent: com::sun::star::uno::XInterface
{

void dispose() ;

void addEventListener ([in] XEventListener xListener);

void removeEventListener([in] XEventListener alListener);
}i
The method removeEventListener () that takes a listener reference, is logical if the implementa -
tion can check for object identity, otherwise it could not identify the listener that has to be
removed. CORBA interfaces are not designed in this manner. They need an object ID, because ob-

ject identity is not guaranteed.

3.4 UNO Language Bindings

This chapter documents the mapping of UNO to various programming languages or component
models. This language binding is sometimes called a UNO Runtime Environment (URE). Each
URE needs to fulfill the specifications given in the earlier chapters. The use of UNO services and
interfaces are also explained in this chapter. Refer to 4 Writing UNO Components for information
about the implementation of UNO objects.

Each section provides detail information for the following topics:
Mapping of all UNO types to the programming language types.
Mapping of the UNO exception handling to the programming language.

Mapping of the fundamental object features (querying interfaces, object lifetime, object
identity).

Bootstrapping of a service manager.Other programming language specific material (like core
libraries in C++ UNO).

111

112

Java, C++, OpenOffice.org Basic, and all languages supporting MS OLE automation or the
Common Language Infrastructure (CLI) on the win32 platform are currently supported. In the
future, the number of supported language bindings may be extended.

3.4.1 Java Language Binding

The Java language binding gives developers the choice of using Java or UNO components for client
programs. A Java program can access components written in other languages and built with a dif-
ferent compiler, as well as remote objects, because of the seamless interaction of UNO bridges.

Java delivers a rich set of classes that can be used within client programs or component implemen -
tations. However, when it comes to interaction with other UNO objects, use UNO interfaces,
because only those are known to the bridge and can be mapped into other environments.

To control the office from a client program, the client needs a Java 1.3 (or later) installation, a free
socket port, and the following jar files juh.jar, jurt.jar, ridl.jar, and unoil jar. A Java installation on
the server-side is not necessary. A step-by-step description is given in the chapter 2 First Steps

When using Java components, the office is installed with Java support. Also make sure that Java is
enabled: there is a switch that can be set to achieve this in the Tools - Options - OpenOffice.org -

Security dialog. All necessary jar files should have been installed during the OpenOffice.org setup.
A detailed explanation can be found in the chapter 4.5.6 Writing UNO Components - Simple Compo-

nent in Java - Storing the Service Manager for Further Use.

The Java UNO Runtime is documented in the Java UNO Reference which can be found in the
OpenOffice.org Software development Kit (SDK) or on api.openoffice.org.

Getting a Service Manager

Office objects that provide the desired functionality are required when writing a client application
that accesses the office. The root of all these objects is the service manager component, therefore
clients need to instantiate it. Service manager runs in the office process, therefore office must be
running first when you use Java components that are instantiated by the office. In a client-server
scenario, the office has to be launched directly. The interprocess communication uses a remote
protocol that can be provided as a command- line argument to the office:

soffice -accept=socket,host=localhost,port=8100;urp

The client obtains a reference to the global service manager of the office (the server) using a local
com.sun.star.bridge.UnoUrlResolver. The global service manager of the office is used to get
objects from the other side of the bridge. In this case, an instance of the
com.sun.star.frame.Desktop is acquired:

import com.sun.star.uno.XComponentContext;
import com.sun.star.comp.helper.Bootstrap;
import com.sun.star.lang.XMultiComponentFactory;
import com.sun.star.bridge.UnoUrlResolver;
import com.sun.star.bridge.XUnoUrlResolver;
import com.sun.star.beans.XPropertySet

import com.sun.star.uno.UnoRuntime;

XComponentContext xcomponentcontext = Bootstrap.createInitialComponentContext (null) ;

// create a connector, so that it can contact the office
XUnoUrlResolver urlResolver = UnoUrlResolver.create (xcomponentcontext) ;

Object initialObject = urlResolver.resolve (
"uno:socket, host=localhost,port=8100;urp;StarOffice.ServiceManager") ;

XMultiComponentFactory xOfficeFactory = (XMultiComponentFactory) UnoRuntime.queryInterface (
XMultiComponentFactory.class, initialObject) ;

OpenOffice.org 2.0 Developer's Guide « May 2005

g

// retrieve the component context as property (it is not yet exported from the office)

// Query for the XPropertySet interface.

XPropertySet xProperySet = (XPropertySet) UnoRuntime.queryInterface (
XPropertySet.class, xOfficeFactory);

// Get the default context from the office server.
Object oDefaultContext = xProperySet.getPropertyValue ("DefaultContext") ;

// Query for the interface XComponentContext.
XComponentContext xOfficeComponentContext = (XComponentContext) UnoRuntime.queryInterface (
XComponentContext.class, oDefaultContext);

// now create the desktop service

// NOTE: use the office component context here!

Object oDesktop = xOfficeFactory.createInstanceWithContext (
“com.sun.star.frame.Desktop", xOfficeComponentContext);

As the example shows, a local component context is created through the
com.sun.star.comp.helper.Bootstrap class (a Java UNO runtime class). Its implementation

provides a service manager that is limited in the number of services it can create. The names of
these services are:

com.sun.star.lang.ServiceManager
com.sun.star.lang.MultiServiceFactory
com.sun.star.loader.Java
com.sun.star.loader.Java2
com.sun.star.bridge.UnoUrlResolver
com.sun.star.bridge.BridgeFactory
com.sun.star.connection.Connector
com.sun.star.connection.Acceptor

They are sufficient to establish a remote connection and obtain the fully featured service manager
provided by the office.

The service manager of the local component context could create other components, but this is only possible
if the service manager is provided with the respective factories during runtime. An example that shows how
this works can be found in the implementation of the Bootstrap class in the project javaunohelper.

There is also a service manager that uses a registry database to locate services. It is implemented by the class
com.sun.star.comp.helper.RegistryServiceFactory in the project javaunohelper. However, the implementa -
tion uses a native registry service manager instead of providing a pure Java implementation.

Transparent Use of Office UNO Components

If some client code wants to use office UNO components, then a typical use case is that the client

code first looks for an existing office installation. If an installation is found, the client checks if the
office process is already running. If no office process is running, an office process is started. After
that, the client code connects to the running office using remote UNO mechanisms in order to get
the remote component context of that office. After this, the client code can use the remote compo-
nent context to access arbitrary office UNO components. From the perspective of the client code,

there is no difference between local and remote components.

The bootstrap method

Therefore, the remote office component context is provided in a more transparent way by the
com.sun.star.comp.helper.Bootstrap.bootstrap () method, which bootstraps the component
context from a UNO installation. A simple client application may then look like: (ProfUNO/Sim -
pleBootstrap java/SimpleBootstrap java.java)

// get the remote office component context

XComponentContext xContext =
com.sun.star.comp.helper.Bootstrap.bootstrap() ;

// get the remote office service manager

XMultiComponentFactory xServiceManager =
xContext.getServiceManager () ;

113

114

// get an instance of the remote office desktop UNO service
Object desktop = xServiceManager.createInstanceWithContext (

"com.sun.star.frame.Desktop", xContext);
The com.sun.star.comp.helper.Bootstrap.bootstrap () method first bootstraps a local com-
ponent context and then tries to establish a named pipe connection to a running office. If no office
is running, an office process is started. If the connection succeeds, the remote component context is
returned.

Note, that the com.sun.star.comp.helper.Bootstrap.bootstrap () method is only available since
OpenOffice.org [001.1.2].

SDK tooling

For convenience, the OpenOffice.org Software Development Kit (SDK) provides some tooling for
writing Java client applications.

One of the requirements for a Java client application is that Java finds the
com.sun.star.comp.helper.Bootstrap class and all the UNO types (for example, UNO inter-
faces) and other Java UNO language binding classes (for example,
com.sun.star.uno.AnyConverter) used by the client code. A natural approach would be to add
the UNO jar files to the Java CLASSPATH, but this requires the knowledge of the location of a
UNO installation. Other approaches would be to use the Java extension mechanism or to deploy
the jar files containing the UNO types in the client jar file. Both of those approaches have several
drawbacks, the most important one is the problem of type conflicts, for example, if a deployed
component adds new UNO types. The SDK tooling therefore provides a more dynamic approach,
namely a customized class loader. The customized class loader has an extended search path, which
also includes the path to a UNO installation. The UNO installation is auto-detected on the system
by using a search algorithm.

Customized Class Loader

The concept is based on the requirement that every class that uses UNO types, or other classes that
come with a office installation, gets loaded by a customized class loader. This customized class
loader recognizes the location of a UNO installation and loads every class from a jar or class file
that belongs to the office installation. That means that the customized class loader must be instanti-
ated and initialized before the first class that uses UNO is loaded.

The SDK tooling allows to build a client jar file, which can be invoked by the following:

java -jar SimpleBootstrap java.jar

The client jar file contains the following files:

META-INF/MANIFEST.MF
com/sun/star/lib/loader/InstallationFinder$StreamGobbler.class
com/sun/star/lib/loader/InstallationFinder.class
com/sun/star/lib/loader/Loader$CustomURLClassLoader.class
com/sun/star/lib/loader/Loader.class
com/sun/star/lib/loader/WinRegKey.class
com/sun/star/lib/loader/WinRegKeyException.class
win/unowinreg.dll

SimpleBootstrap java.class

A client application created by using the SDK tooling will automatically load the class
com.sun.star.lib.loader.Loader, which sets up the customized class loader for loading the
application class. In order to achieve this, the SDK tooling creates a manifest file that contains the
following Main-Class entry

Main-Class: com.sun.star.lib.loader.Loader

OpenOffice.org 2.0 Developer's Guide « May 2005

The customized loader needs a special entry in the manifest file that specifies the name of the class
that contains the client application code:

Name: com/sun/star/lib/loader/Loader.class
Application-Class: SimpleBootstrap java

The implementation of com.sun.star.lib.loader.Loader.main reads this entry and calls the
main method of the application class after the customized class loader has been created and set up
properly. The SDK tooling will take over the task of writing the correct manifest entry for the
application class.

Finding a UNO Installation

The location of a UNO installation can be specified by the Java system property
com.sun.star.lib.loader.unopath. The system property can be passed to the client application
by using the -D flag, e.g

java -Dcom.sun.star.lib.loader.unopath=/opt/OpenOffice.org/program -jar Sim-
pleBootstrap java.jar

In addition, it is possible to specify a UNO installation by setting the environment variable
UNO_PATH to the program directory of a UNO installation, for example,

setenv UNO_PATH /opt/OpenOffice.org/program

This does not working with Java 1.3.1 and Java 1.4, because environment variables are not supported in
those Java versions.

If no UNO installation is specified by the user, the default UNO installation on the system is
searched. The search algorithm is platform dependent.

On the Windows platform, the UNO installation is found by reading the default value of the key
'Software\OpenOffice.org\UNO\InstallPath' from the root key HKEY CURRENT USER in the
Windows Registry. If this key is missing, the key is read from the root key

HKEY LOCAL_ MACHINE. One of those keys is always written during the installation of an of-
fice. In a single user installation the key is written to HKEY CURRENT USER, in a multi-user
installation of an administrator to HKEY LOCAL MACHINE. Note that the default installation is
the last installed office, but with the restriction, that HKEY CURRENT_ USER has a higher priority
than HKEY LOCAL_MACHINE. The reading from the Windows Registry requires that the native
library unowinreg.dl1 is part of the application jar file or can be found in the
java.library.path. The SDK tooling automatically will put the native library into the jar file
containing the client application.

On the Unix/Linux platforms, the UNO installation is found from the PATH environment variable.
Note that for Java 1.3.1 and Java 1.4, the installation is found by using the which command,
because environment variables are not supported with those Java versions. Both methods require
that the soffice executable or a symbolic link is in one of the directories listed in the PATH envi-
ronment variable. For older versions than OpenOffice.org 2.0 the above described methods may
fail. In this case the UNO installation is taken from the .sversionrc file in the user's home direc-
tory. The default installation is the last entry in the .sversionrc file which points to a UNO instal-
lation. Note that there won't be a .sversionrc file with OpenOffice.org 2.0 anymore.

Handling Interfaces

The service manager is created in the server process and the Java UNO remote bridge ensures that
its XInterface is transported back to the client. A Java proxy object is constructed that can be used
by the client code. This object is called the initial object, because it is the first object created by the
bridge. When another object is obtained through this object, then the bridge creates a new proxy.

115

116

For instance, if a function is called that returns an interface. That is, the original object is actually
running in the server process (the office) and calls to the proxy are forwarded by the bridge. Not
only interfaces are converted, but function arguments, return values and exceptions.

The Java bridge maps objects on a per-interface basis, that is, in the first step only the interface is
converted that is returned by a function described in the API reference. For example, if you have
the service manager and use it to create another component, you initially get a
com.sun.star.uno.XInterface:

XInterface xint= (XInterface)

serviceManager.createInstance (“com.sun.star.bridge.oleautomation.Factory”) ;

You know from the service description that Factory implements a
com.sun.star.lang.XMultiServiceFactory interface. However, you cannot cast the object or
call the interface function on the object, since the object is only a proxy for just one interface,
XInterface. Therefore, you have to use a mechanism that is provided with the Java bridge that
generates proxy objects on demand. For example:

XMultiServiceFactory xfac = (XMultiServiceFactory) UnoRuntime.queryInterface (
XMultiServiceFactory.class, xint);

If xint is a proxy, then queryInterface () hands out another proxy for XMultiServiceFactory

provided that the original object implements it. Interface proxies can be used as arguments in func-

tion calls on other proxy objects. For example:

// client side
// obj is a proxy interface and returns another interface through its func() method
XSomething ret = obj.func();

// anotherObject is a proxy interface, too. Its method func (XSomething arg)
// takes the interface ret obtained from obj
anotherObject. func (ret) ;

In the server process, the obj object would receive the original ref object as a function argument.

It is also possible to have Java components on the client side. As well, they can be used as function
arguments, then the bridge would set up proxies for them in the server process.

Not all language concepts of UNO have a corresponding language element in Java. For example,
there are no structs and all-purpose out parameters. Refer to 3.4.1 Professional UNO - UNO Lan-
guage Bindings - Java Language Binding - Type Mappings for how those concepts are mapped.

Interface handling normally involves the ability of com.sun.star.uno.XInterface to acquire and
release objects by reference counting. In Java, the programmer does not bother with acquire ()
and release (), since the Java UNO runtime automatically acquires objects on the server side
when com.sun.star.uno.UnoRuntime.queryInterface () is used. Conversely, when the Java
garbage collector deletes your references, the Java UNO runtime releases the corresponding office
objects. If a UNO object is written in Java, no reference counting is used to control its lifetime. The
garbage collector takes that responsibility.

Sometimes it is necessary to find out if two interfaces belong to the same object. In Java, you would
compare the references with the equality operator '==". This works as long as the interfaces refer to
a local Java object. Often the interfaces are proxies and the real objects reside in a remote process.
There can be several proxies that belong to the same object, because objects are bridged on a per-
interface basis. Those proxies are Java objects and comparing their references would not establish
them as parts of the same object. To determine if interfaces are part of the same UNO object, use
the method areSame () at the com.sun.star.uno.UnoRuntime class:

static public boolean areSame (Object objectl, Object object2)

OpenOffice.org 2.0 Developer's Guide « May 2005

Type Mappings

Mapping of Simple Types

The following table shows the mapping of simple UNO types to the corresponding Java types.

117

118

UNO Java

void void

boolean boolean

byte byte

short short

unsigned short short

long int

unsigned long int

hyper long

unsigned hyper long

float float

double double

char char

string java.lang.String

type com.sun.star.uno.Type
any java.lang.Object/com.sun.star.uno.Any

The mapping between the values of the corresponding UNO and Java types is obvious, except for
a few cases that are explained in the following sections:

Mapping of Unsigned Integer Types

An unsigned UNO integer type encompasses the range from 0 to 2" — 1, inclusive, while the corre-
sponding signed Java integer type encompasses the range from —2" 'to 2¥ "' — 1, inclusive (where
N is 16, 32, or 64 for unsigned short, unsigned long, or unsigned hyper, respectively). The
mapping is done modulo N, that is: 0 is mapped to 0; 2V "' — 1 is mapped to 2V '—1; 2V 'is
mapped to —2¥"!;and 2¥ — 1 is mapped to —1.

Users should be careful when using any of the deprecated UNO unsigned integer types. A user is
responsible for correctly interpreting values of signed Java integer types as unsigned integer values
in such cases.

Mapping of String

The mapping between the UNO stringtype and java.lang.String is straightforward, except
for three details:

Only non-null references to java.lang.String are allowed in the context of UNO.

The length of a string that can be represented by a java.lang.String object is limited. It is an
error to use a longer UNO string value in the context of the Java language binding.

An object of type java.lang.String can represent an arbitrary sequence of UTF-16 code units,
whereas a value of the UNO string type is an arbitrary sequence of Unicode scalar values.
This only matters in so far as some individual UTF-16 code units (namely the individual high-
and low-surrogate code points in the range D800-DFFF) have no corresponding Unicode scalar
values, and are thus forbidden in the context of UNO. For example, the Java string "\uD800" is
illegal in this context, while the string "\uD800\ubc00" would be legal. See www.unicode.org for
more information on the details of Unicode.

OpenOffice.org 2.0 Developer's Guide « May 2005

Mapping of Type

The Java class com.sun.star.uno.Type is used to represent the UNO type type; only non-null
references to com.sun.star.uno.Type are valid. (It is a historic mistake that com.sun.star.Type
is not final. You should never derive from it in your code.)

In many places in the Java UNO runtime, there are convenience functions that take values of type
java.lang.Class where conceptually a value of com.sun.star.uno.Type would be expected. For
example, there are two overloaded versions of the method com.sun.star.uno.Uno-
Runtime.queryInterface, one with a parameter of type com.sun.star.uno.Type and one with a
parameter of type java.lang.Class. See the documentation of com.sun.star.uno. Type for the
details of how values of java.lang.Class are interpreted in such a context.

Mapping of Any

There is a dedicated com.sun.star.uno.Any type, but it is not always used. An any in the API
reference is represented by a java.lang.Object in Java UNO. An Object reference can be used to
refer to all possible Java objects. This does not work with primitive types, but if you need to use
them as an any, there are Java wrapper classes available that allow primitive types to be used as
objects. Also, a Java Object always brings along its type information by means of an instance of
java.lang.Class. Therefore a variable declared as:

Object ref;

can be used with all objects and its type information is available by calling:

ref.getClass();

Those qualities of Object are sufficient to replace the Any in most cases. Even Java interfaces gen-
erated from IDL interfaces do not contain Anys, instead Object references are used in place of
Anys. Cases where an explicit Any is needed to not loose information contain unsigned integer
types, all interface types except the basic XInterface, and the void type.

However, implementations of those interfaces must be able to deal with real Anys that can also be passed by
means of Object references.

To facilitate the handling of the Any type, use the com.sun.star.uno.AnyConverter class. It is
documented in the Java UNO reference. The following list sums up its methods:

static boolean isArray(java.lang.Object object)

static boolean isBoolean (java.lang.Object object)

static boolean isByte(java.lang.Object object)

static boolean isChar(java.lang.Object object)

static boolean isDouble (java.lang.Object object)

static boolean isFloat(java.lang.Object object)

static boolean isInt(java.lang.Object object)

static boolean isLong(java.lang.Object object)

static boolean isObject(java.lang.Object object)

static boolean isShort(java.lang.Object object)

static boolean isString(java.lang.Object object)

static boolean isType(java.lang.Object object)

static boolean isVoid(java.lang.Object object)

static java.lang.Object toArray(java.lang.Object object)
static boolean toBoolean (java.lang.Object object)

static byte toByte(java.lang.Object object)

static char toChar(java.lang.Object object)

static double toDouble (java.lang.Object object)

static float toFloat(java.lang.Object object)

static int toInt(java.lang.Object object)

static long tolLong(java.lang.Object object)

static java.lang.Object toObject (Type type, Jjava.lang.Object object)
static short toShort(java.lang.Object object)

static java.lang.String toString(java.lang.Object object)
static Type toType(java.lang.Object object)

The Java com.sun.star.uno.Any is needed in situations when the type needs to be specified
explicitly. Assume there is a C++ component with an interface function which is declared in
UNOIDL as:

119

//UNOIDL
void foo(any arg) ;

The corresponding C++ implementation could be:

void foo(const Anyé& arg)

{
const Type& t = any.getValueType ()
if (t == XReference::static_type())
{

Reference<XReference> myref = *reinterpret cast<const Reference<XReference>*>(any.getValue())

}

In the example, the any is checked if it contains the expected interface. If it does, it is assigned
accordingly. If the any contained a different interface, a query would be performed for the
expected interface. If the function is called from Java, then an interface has to be supplied that is an
object. That object could implement several interfaces and the bridge would use the basic XInter-
face. If this is not the interface that is expected, then the C++ implementation has to call query-
Interface to obtain the desired interface. In a remote scenario, those queryInterface () calls
could lead to a noticeable performance loss. If you use a Java Any as a parameter for foo (), the
intended interface is sent across the bridge.

It is a historic mistake that com.sun.star.uno.Any is not final. You should never derive from it in
your code.

Mapping of Sequence Types

A UNO sequence type with a given component type is mapped to the Java array type with corre-
sponding component type.

UNO sequence<long> is mapped to Java int[].
UNO sequence< sequence<long> >is mapped toJava int[][].

Only non-null references to those Java array types are valid. As usual, non-null references to other
Java array types that are assignment compatible to a given array type can also be used, but doing
SO can cause java.lang.ArrayStoreExceptions. In Java, the maximal length of an array is lim-
ited; therefore, it is an error ifa UNO sequence that is too long is used in the context of the Java
language binding.

Mapping of Enum Types

An UNO enum type is mapped to a public, final Java class with the same name, derived from the
class com.sun.star.uno.Enum. Only non-null references to the generated final classes are valid.

The base class com.sun.star.uno.Enum declares a protected member to store the actual value, a
protected constructor to initialize the value and a public getvalue () method to get the actual
value. The generated final class has a protected constructor and a public method getDefault ()
that returns an instance with the value of the first enum member as a default. For each member of
a UNO enum type, the corresponding Java class declares a public static member of the given Java
type that is initialized with the value of the UNO enum member. The Java class for the enum type
has an additional public method fromInt () that returns the instance with the specified value. The
following IDL definition for com.sun.star.uno.TypeClass:

module com { module sun { module star { module uno {

enum TypeClass {
INTERFACE,
SERVICE,
IMPLEMENTATION,
STRUCT,
TYPEDEF,

120 OpenOffice.org 2.0 Developer's Guide « May 2005

is mapped to:
package com.sun.star.uno;

public final class TypeClass extends com.sun.star.uno.Enum {
private TypeClass (int value) {
super (value) ;

}

public static TypeClass getDefault () {
return INTERFACE;
}

public static final TypeClass INTERFACE = new TypeClass (0);
public static final TypeClass SERVICE = new TypeClass(1l);

public static final TypeClass IMPLEMENTATION = new TypeClass(2);
public static final TypeClass STRUCT = new TypeClass(3);

public static final TypeClass TYPEDEF = new TypeClass(4);

public static TypeClass fromInt (int value) {
switch (value) {
case 0:
return INTERFACE;
case 1:
return SERVICE;
case 23
return IMPLEMENTATION;
casle 3
return STRUCT;
case 4:
return TYPEDEF;

Mapping of Struct Types

A plain UNO struct type is mapped to a public Java class with the same name. Only non-null refer-
ences to such a class are valid. Each member of the UNO struct type is mapped to a public field
with the same name and corresponding type. The class provides a default constructor which ini-
tializes all members with default values, and a constructor which takes explicit values for all struct
members. If a plain struct type inherits from another struct type, the generated class extends the
class of the inherited struct type.

module com { module sun { module star { module chart {

struct ChartDataChangeEvent: com::sun::star::lang::EventObject {
ChartDataChangeType Type;
short StartColumn;
short EndColumn;
short StartRow;
short EndRow;

is mapped to:
package com.sun.star.chart;

public class ChartDataChangeEvent extends com.sun.star.lang.EventObject {
public ChartDataChangeType Type;
public short StartColumn;
public short EndColumn;
public short StartRow;
public short EndRow;

public ChartDataChangeEvent () {
Type = ChartDataChangeType.getDefault () ;
}
public ChartDataChangeEvent (
Object Source, ChartDataChangeType Type,
short StartColumn, short EndColumn, short StartRow, short EndRow)

super (Source) ;

121

122

this.Type = Type;
this.StartColumn = StartColumn;
this.EndColumn = EndColumn;
this.StartRow = StartRow;
this.EndRow = EndRow;
}
Similar to a plain struct type, a polymorphic UNO struct type template is also mapped to a Java
class. The only difference is how struct members with parametric types are handled, and this
handling in turn differs between Java 1.5 and older versions.
Take, for example, the polymorphic struct type template:
module com { module sun { module star { module beans ({
struct Optional<T> {

boolean IsPresent;
T Value;

In Java 1.5, a polymorphic struct type template with a list of type parameters is mapped to a
generic Java class with a corresponding list of unbounded type parameters. For
com.sun.star.beans.Optional, that means that the corresponding Java 1.5 class looks something
like the following example:
package com.sun.star.beans;
public class Optional<T> {
public boolean IsPresent;
public T Value;
public Optional() {}
public Optional (boolean IsPresent, T Value) {
this.IsPresent = IsPresent;
this.Value = Value;
}
Instances of such polymorphic struct type templates map to Java 1.5 in a natural way. For example,
UNO Optional<string>maps to Java Optional<sString>. However, UNO type arguments that
would normally map to primitive Java types map to corresponding Java wrapper types instead:

boolean maps to java.lang.Boolean;

byte maps to java.lang.Byte;
- short and unsigned short map to java.lang.Short;
- longand unsigned long map to java.lang.Integer;
- hyper and unsigned hyper map to java.lang.Long;
- float maps to java.lang.Float;
- double maps to java.lang.Double;
- char maps to java.lang.Character.

For example, UNO Optional<long>maps to Java Optional<Integer>. Also note that UNO type
arguments of both any and com.sun.star.uno.XInterface map to java.lang.Object, and thus,
for example, both Optional<any>and Optional<XInterface> map to Java Optional<Object>.

Still, there are a few problems and pitfalls when dealing with parametric members of default-con-
structed polymorphic struct type instances:

One problem is that such members are initialized to null by the default constructor, but null is
generally not a legal value in the context of Java UNO, except for values of any or interface
type. For example, new Optional<PropertyValue> () .Value is of type

OpenOffice.org 2.0 Developer's Guide « May 2005

com.sun.star.beans.PropertyValue (a struct type), but is a null reference. Similarly, new
Optional<Boolean> () .Value is also a null reference (instead of a reference to Boolean.FALSE,
say). The chosen solution is to generally allow null references as values of Java class fields that
correspond to parametric members of polymorphic UNO struct types. However, to avoid any
problems, it is a good idea to not rely on the default constructor in such situations, and instead
initialize any problematic fields explicitly. (Note that this is not really a problem for optional,
as Optional<T> () .IsPresent will always be false for a default-constructed instance and
thus, because of the documented conventions for com.sun.star.beans.Optional, the actual
contents of value should be ignored, anyway; in other cases, like with
com.sun.star.beans.Ambiguous, this can be a real issue, however.)

Another pitfall is that a parametric member of type any of a default-constructed polymorphic
struct type instance (think new Optional<Object>().Value inJava 1.5, Optional<Any> o;
o.Value in C++) has different values in the Java language binding and the C++ language
binding. In Java, it contains a null reference of type XInterface (i.e., the Java value null),
whereas in C++ it contains void. Again, to avoid any problems, it is best not to rely on the
default constructor in such situations.

In Java versions prior to 1.5, which do not support generics, a polymorphic struct type template is
mapped to a plain Java class in such a way that any parametric members are mapped to class
fields of type java.lang.Object. This is generally less favorable than using generics, as it reduces
type-safety, but it has the advantage that it is compatible with Java 1.5 (actually, a single Java class
file is generated for a given UNO struct type template, and that class file works with both Java 1.5
and older versions). In a pre-1.5 Java, the Optional example will look something like the fol-
lowing:

package com.sun.star.beans;

public class Optional {
public boolean IsPresent;
public Object Value;

public Optional() {}

public Optional (boolean IsPresent, Object Value) {
this.IsPresent = IsPresent;
this.Value = Value;

}

How java.lang.Object is used to represent values of arbitrary UNO types is detailed as follows:

Values of the UNO types boolean, byte, short, long, hyper, float, double, and char are
represented by non-null references to the corresponding Java types java.lang.Boolean,
java.lang.Byte, java.lang.Short, java.lang.Integer, java.lang.Long,
java.lang.Float, java.lang.Double, and java.lang.Character.

Values of the UNO types unsigned short, unsigned long, and unsigned hyper are repre-
sented by non-null references to the corresponding Java types java.lang.Short,
java.lang.Integer, and java.lang.Long. Whether a value of such a Java type corresponds to
a signed or unsigned UNO type must be deducible from context.

Values of the UNO types string, type, any, and the UNO sequence, enum, struct, and inter-
face types (which all map to Java reference types) are represented by their standard Java map

pings.

The UNO type void and UNO exception types cannot be used as type arguments of instanti-
ated polymorphic struct types.

This is similar to how java.lang.Object is used to represent values of the UNO any type. The
difference is that there is nothing like com.sun.star.uno.Any here, which is used to disambiguate
those cases where different UNO types map to the same subclass of java.lang.Object. Instead,

123

124

here it must always be deducible from context exactly which UNO type a given Java reference
represents.

The problems and pitfalls mentioned for Java 1.5, regarding parametric members of default-con-
structed polymorphic struct type instances, apply for older Java versions as well.

Mapping of Exception Types

A UNO exception type is mapped to a public Java class with the same name. Only non-null refer-
ences to such a class are valid.

There are two UNO exceptions that are the base for all other exceptions. These are the
com.sun.star.uno.Exception and com.sun.star.uno.RuntimeException that are inherited by
all other exceptions. The corresponding exceptions in Java inherit from Java exceptions:

module com { module sun { module star { module uno {

exception Exception {
string Message;
XInterface Context;

}i
exception RuntimeException {

string Message;
XInterface Context;

The com.sun.star.uno.Exception in Java:
package com.sun.star.uno;

public class Exception extends java.lang.Exception {
public Object Context;

public Exception() {}

public Exception (String Message) {
super (Message) ;

}

public Exception (String Message, Object Context) {
super (Message) ;
this.Context = Context;

}

The com.sun.star.uno.RuntimeException in Java:
package com.sun.star.uno;

public class RuntimeException extends java.lang.RuntimeException {
public Object Context;

public RuntimeException() {}

public RuntimeException (String Message) {
super (Message) ;

}

public RuntimeException (String Message, Object Context) {
super (Message) ;
this.Context = Context;

}

As shown, the Message member has no direct counterpart in the respective Java class. Instead, the
constructor argument Message is used to initialize the base class, which is a Java exception. The
message is accessible through the inherited getMessage () method. All other members of a UNO
exception type are mapped to public fields with the same name and corresponding Java type. A
generated Java exception class always has a default constructor that initializes all members with
default values, and a constructor which takes values for all members.

OpenOffice.org 2.0 Developer's Guide « May 2005

If an exception inherits from another exception, the generated class extends the class of the inher-
ited exception.

Mapping of Interface Types

A UNO interface type is mapped to a public Java interface with the same name. Unlike for Java
classes that represent UNO sequence, enum, struct, and exception types, a null reference is actually
a legal value for a Java interface that represents a UNO interface type—the Java null reference
represents the UNO null reference.

If a UNO interface type inherits one ore more other interface types, the Java interface extends the
corresponding Java interfaces.

The UNO interface type com.sun.star.uno.XInterface is special: Only when that type is used
as a base type of another interface type is it mapped to the Java type
com.sun.star.uno.XInterface. In all other cases (when used as the component type of a
sequence type, as a member of a struct or exception type, or as a parameter or return type of an
interface method) it is mapped to java.lang.Object. Nevertheless, valid Java values of that type
are only the Java null reference and references to those instances of java.lang.Object that imple-
ment com.sun.star.uno.XInterface.

A UNO interface attribute of the form

[attribute] Type Name {
get raises (ExceptionGl, ..., ExceptionGM) ;
set raises (ExceptionSl, ..., ExceptionSM);

bi
is represented by two Java interface methods

Type getName () throws ExceptionGl, ..., ExceptionGM;

void setName (Type value) throws ExceptionSl, ..., ExceptionSM;

If the attribute is marked readonly, then there is no set method. Whether or not the attribute is
marked bound has no impact on the signatures of the generated Java methods.

A UNO interface method of the form

Type0 name ([in] Typel argl, [out] Type2 arg2, [inout] Type3d arg3) raises (Exceptionl, ..., ExceptionN);

is represented by a Java interface method

Type0 name (Typel argl, Type2[] arg2, Type3[] arg3) throws Exceptionl, ..., ExceptionN;

Whether or not the UNO method is marked oneway has no impact on the signature of the gener-
ated Java method. As can be seen, out and inout parameters are handled specially. To help
explain this, take the example UNOIDL definitions

struct FooStruct ({
long nval;
string strval;

}i

interface XFoo {

string funcOne ([in] string value);

FooStruct funcTwo ([inout] FooStruct value) ;

sequence<byte> funcThree ([out] sequence<byte> value);
}i
The semantics of a UNO method call are such that the values of any in or inout parameters are
passed from the caller to the callee, and, if the method is not marked oneway and the execution
terminated successfully, the callee passes back to the caller the return value and the values of any
out or inout parameters. Thus, the handling of in parameters and the return value maps naturally
to the semantics of Java method calls. UNO out and inout parameters, however, are mapped to
arrays of the corresponding Java types. Each such array must have at least one element (i.e., its
length must be at least one; practically, there is no reason why it should ever be larger). Therefore,
the Java interface corresponding to the UNO interface XFoo looks like the following:

125

public interface XFoo extends com.sun.star.uno.XInterface ({
String funcOne (String value) ;
FooStruct funcTwo (FooStruct[] wvalue);
byte[] funcThree (byte[][] value);

}

This is how FooStruct would be mapped to Java:

public class FooStruct {
public int nval;
public String strval;

public FooStruct () {
strval="";

}

public FooStruct (int nval, String strval) ({
this.nval = nval;
this.strval = strval;

}

When providing a value as an inout parameter, the caller has to write the input value into the
element at index zero of the array. When the function returns successfully, the value at index zero
reflects the output value, which may be the unmodified input value, a modified copy of the input

value, or a completely new value. The object obj implements XFoo:
// calling the interface in Java
obj.funcOne (null) ; // error, String value is null

obj.funcOne ("") ; // OK

FooStruct[] inoutstruct= new FooStruct[1];

obj.funcTwo (inoutstruct) ; // error, inoutstruct[0] is null
inoutstruct[0]= new FooStruct(); // now we initialize inoutstruct[O0]
obj.funcTwo (inoutstruct) ; // OK

When a method receives an argument that is an out parameter, upon successful return, it has to
provide a value by storing it at index null of the array.

// method implementations of interface XFoo

public String funcOne (/*in*/ String value) {
assert value != null; // otherwise, it is a bug of the caller
return null; // error; instead use: return "";

}

public FooStruct funcTwo (/*inout*/ FooStruct[] value) {

assert value != null && value.length >= 1 && value[0] != null;
value[0] = null; // error; instead use: value[0] = new FooStruct() ;
return null; // error; instead use: return new FooStruct();

}

public byte[] funcThree (/*out*/ bytel[][] value) {
assert value != null && value.length >= 1;
value[0] = null; // error; instead use: value[0] = new byte[0];
return null; // error; instead use: return new byte[0];

}

Mapping of UNOIDL Typedefs

UNOIDL typedefs are not visible in the Java language binding. Each occurrence of a typedef is
replaced with the aliased type when mapping from UNOIDL to Java.

Mapping of Individual UNOIDL Constants
An individual UNOIDL constant

module example {
const long USERFLAG = 1;
bi
is mapped to a public Java interface with the same name:
package example;
public interface USERFLAG ({

int value = 1;

}

126 OpenOffice.org 2.0 Developer's Guide « May 2005

Note that the use of individual constants is deprecated.

Mapping of UNOIDL Constant Groups
A UNOIDL constant group

module example {
constants User ({
const long FLAGL
const long FLAG2
const long FLAG3

[(|
N =

Yi
is mapped to a public Java interface with the same name:
package example;
public interface User ({
int FLAG1 ig

int FLAG2 25
int FLAG3 3e

}

Each constant defined in the group is mapped to a field of the interface with the same name and
corresponding type and value.

Mapping of UNOIDL Modules

A UNOIDL module is mapped to a Java package with the same name. This follows from the fact
that each named UNO and UNOIDL entity is mapped to a Java class with the same name. (UN-
OIDL uses “::” to separate the individual identifiers within a name, as in
“com::sun::star::uno”, whereas UNO itself and Java both use “.”, as in “com.sun.star.uno”;
therefore, the name of a UNOIDL entity has to be converted in the obvious way before it can be
used as a name in Java.) UNO and UNOIDL entities not enclosed in any module (that is, whose

« » <

names do not contain any “.” or “::”, respectively), are mapped to Java classes in an unnamed
package.

Mapping of Services

A new-style services is mapped to a public Java class with the same name. The class has one or
more public static methods that correspond to the explicit or implicit constructors of the service.

For a new-style service with a given interface type XIfc, an explicit constructor of the form
name ([in] Typel argl, [in] Type2 arg2) raises (Exceptionl, ..., ExceptionN);

is represented by the Java method

public static XIfc name (com.sun.star.uno.XComponentContext context, Typel argl, Type2 arg2)
throws Exceptionl, ..., ExceptionN { ... }

A UNO rest parameter (any...)is mapped to a Java rest parameter (java.lang.Object...)in
Java 1.5, and to java.lang.Object[] in older versions of Java.

If a new-style service has an implicit constructor, the corresponding Java method is of the form
public static XIfc create(com.sun.star.uno.XComponentContext context) { ... }

The semantics of both explicit and implicit service constructors in Java are as follows:

The first argument to a service constructor is always a
com.sun.star.uno.XComponentContext, which must be non-null. Any further arguments are
used to initialize the created service (see below).

127

128

The service constructor first uses com.sun.star.uno.XComponentContext:getServiceMan-
ager to obtain a service manager (a com.sun.star.lang.xMultiComponentFactory) from the
given component context.

The service constructor then uses com.sun.star.lang.XMultiComponentFactory:createln-
stanceWithArgumentsAndContext to create a service instance, passing it the list of arguments
(without the initial XComponentContext). If the service constructor has a single rest parameter,
its sequence of any values is used directly, otherwise the given arguments are made into a

sequence of any values. In the case of an implicit service constructor, no arguments are passed,

and com.sun.star. lang.XMultiComponentFactory:createInstanceWithContext is used
instead.

If any of the above steps fails with an exception that the service constructor may throw
(according to its exception specification), the service constructor also fails by throwing that
exception. Otherwise, if any of the above steps fails with an exception that the service con-
structor may not throw, the service constructor instead fails by throwing a
com.sun.star.uno.DeploymentException. Finally, if no service instance could be created
(because either the given component context has no service manager, or the service manager
does not support the requested service), the service constructor fails by throwing a
com.sun.star.uno.DeploymentException. The net effect is that a service constructor either
returns a non-null instance of the requested service, or throws an exception; a service con-
structor will never return a null instance.

Old-style services are not mapped into the Java language binding.

Mapping of Singletons
A new-style singleton of the form
singleton Name: XIfc;

is mapped to a public Java class with the same name. The class has a single method

public static XIfc get (com.sun.star.uno.XComponentContext context) { ... }
The semantics of such a singleton getter method in Java are as follows:
The com.sun.star.uno.XComponentContext argument must be non-null.

The singleton getter uses com.sun.star.uno.XComponentContext:getValueByName to obtain
the singleton instance (within the “/singletons/” name space).

If no singleton instance could be obtained, the singleton getter fails by throwing a
com.sun.star.uno.DeploymentException. The net effect is that a singleton getter either

returns the requested non-null singleton instance, or throws an exception; a singleton getter will

never return a null instance.

Old-style singletons are not mapped into the Java language binding.

Inexact approximation of UNO Value Semantics

Some UNO types that are generally considered to be value types are mapped to reference types in
Java. Namely, these are the UNO types string, type, any, and the UNO sequence, enum, struct,
and exception types. The problem is that when a value of such a type (a Java object) is used

as the value stored in an any;
as the value of a sequence component;

as the value of a struct or exception member;

OpenOffice.org 2.0 Developer's Guide « May 2005

as the value of an interface attribute;

as an argument or return value in an interface method invocation;
as an argument in a service constructor invocation;

as a raised exception;

then Java does not create a clone of that object, but instead shares the object via multiple references
to it. If the object is now modified through any one of its references, all other references observe the
modification, too. This violates the intended value semantics.

The solution chosen in the Java language binding is to forbid modification of any Java objects that
are used to represent UNO values in any of the situations listed above. Note that for Java objects
that represent values of the UNO type string, or a UNO enum type, this is trivially warranted, as
the corresponding Java types are immutable. This would also hold for the UNO type type, if the
Java class com.sun.star.Type were final.

In the sense used here, modifying a Java object A includes modifying any other Java object B that is
both (1) reachable from A by following one or more references, and (2) used to represent a UNO
value in any of the situations listed above. For a Java object that represents a UNO any value, the
restriction to not modify it only applies to a wrapping object of type com.sun.star.uno.Any
(which should really be immutable), or to an unwrapped object that represents a UNO value of
type string or type, or of a sequence, enum, struct or exception type.

Note that the types java.lang.Boolean, java.lang.Byte, java.lang.Short,
java.lang.Integer, java.lang.Long, java.lang.Float, java.lang.Double, and
java.lang.Character, used to represent certain UNO values as any values or as parametric
members of instantiated polymorphic struct types, are immutable, anyway, and so need not be
considered specially here.

3.4.2 C++ Language Binding

This chapter describes the UNO C++ language binding. It provides an experienced C++ pro-
grammer the first steps in UNO to establish UNO interprocess connections to a remote
OpenOffice.org and to use its UNO objects.

Library Overview

Hllustration 3.8Compromise between service-manger-only und component context concept gives an over-
view about the core libraries of the UNO component model.

129

130

C++ Components

A4

cppuhelper (C++)

\ 4

msci_uno.dll (C) l Jl[inked
0

libsunpros_uno.so (C)

cppu (C)

libgcc2_uno.so (C)

I 1111

sal (C) salhelper (C++) Compiler

Operating system

Hllustration 3.16: Shared Libraries for C++ UNO

These shared libraries can be found in the <officedir>/program folder of your OpenOffice.org instal-
lation. The label (C) in the illustration above means C linkage and (C++) means C++ linkage. For
all libraries, a C++ compiler to build is required.

The basis for all UNO libraries is the sal library. It contains the system abstraction layer (sal) and
additional runtime library functionality, but does not contain any UNO-specific information. The
commonly used C-functions of the sal library can be accessed through C++ inline wrapper classes.
This allows functions to be called from any other programming language, because most program -
ming languages have some mechanism to call a C function.

The salhelper library is a small C++ library which offers additional runtime library functionality,
that could not be implemented inline.

The cppu (C++ UNO) library is the core UNO library. It offers methods to access the UNO type
library, and allows the creation, copying and comparing values of UNO data types in a generic
manner. Moreover, all UNO bridges (= mappings + environments) are administered in this library.

The examples msci_uno.dll, libsunpro5 uno.so and libgcc2 _uno.so are only examples for language
binding libraries for certain C++ compilers.

The cppuhelper library is a C++ library that contains important base classes for UNO objects and
functions to bootstrap the UNO core. C++ Components and UNO programs have to link the
cppuhelper library.

OpenOffice.org 2.0 Developer's Guide « May 2005

All the libraries shown above will be kept compatible in all future releases of UNO. You will be
able to build and link your application and component once, and run it with the current and later
versions of OpenOffice.org.

System Abstraction Layer

C++ UNO client programs and C++ UNO components use the system abstraction layer (sal) for
types, files, threads, interprocess communication, and string handling. The sal library offers oper-
ating system dependent functionality as C functions. The aim is to minimize or to eliminate oper-
ating system dependent #ifdef in libraries above sal. Sal offers high performance access because
sal is a thin layer above the API offered by each operating system.

In OpenOffice.org GUI APIs are encapsulated in the vcl library.

Sal exports only C symbols. The inline C++ wrapper exists for convenience. Refer to the UNO C++
reference that is part of the OpenOffice.org SDK or in the References section of udk.openoffice.orgto
gain a full overview of the features provided by the sal library. In the following sections, the C++
wrapper classes will be discussed. The sal types used for UNO types are discussed in section 3.4.2
Professional UNO - UNO Language Bindings - C++ Language Binding - Type Mappings. If you want to
use them, look up the names of the appropriate include files in the C++ reference.

File Access

The classes listed below manage platform independent file access. They are C++ classes that call
corresponding C functions internally.

osl::FileBase
osl::Volumelnfo
osl::FileStatus
osl::File
osl::Directoryltem
osl::Directory

An unfamiliar concept is the use of absolute filenames throughout the whole API. In a multi-
threaded program, the current working directory cannot be relied on, thus relative paths must be
explicitly made absolute by the caller.

Threadsafe Reference Counting

The functions os1_incrementInterlockedCount () and osl decrementInterlockedCount () in
the global C++ namespace increase and decrease a 4-byte counter in a threadsafe manner. This is
needed for reference counted objects. Many UNO APIs control object lifetime through refcounting.
Since concurrent incrementing the same counter does not increase the reference count reliably,
these functions should be used. This is faster than using a mutex on most platforms.

131

132

Threads and Thread Synchronization

The class osl::Thread is meant to be used as a base class for your own threads. Overwrite the run ()
method.

The following classes are commonly used synchronization primitives:
osl::Mutex
osl::Condition

osl::Semaphore

Socket and Pipe

The following classes allow you to use interprocess communication in a platform independent
manner:

. osl::Socket

.- osl::Pipe

Strings

The classes rtl::OString (8-bit, encoded) and rtl::OUString (16-bit, UTF-16) are the base-string
classes for UNO programs. The strings store their data in a heap memory block. The string is ref-
counted and incapable of changing, thus it makes copying faster and creation is an expensive oper-
ation. An OUString can be created using the static function OUString: :createFromASCII () or it
can be constructed from an 8-bit string with encoding using this constructor:

OUString(const sal_Char * value,
sal Int32 length,
rtl TextEncoding encoding,
sal_ulInt32 convertFlags = OSTRING_TO_OUSTRING_CVTFLAGS) ;
It can be converted into an 8-bit string, for example, for printf () using the rtl::0UStringTo-

0string () function that takes an encoding, such as RTL_TEXTENCODING_ ASCII_US.

For fast string concatenation, the classes rtl::OStringBuffer and rtl::OUStringBuffer should be used,
because they offer methods to concatenate strings and numbers. After preparing a new string
buffer, use the makeStringAndClear () method to create the new OUString or 0OString. The fol-
lowing example illustrates this:

sal Int32 =
double pi = 3.

3

42;

14159;

// create a buffer with a suitable size, rough guess is sufficient
// stringbuffer extends if necessary

OUStringBuffer buf(128);

// append an ascii string
buf.appendAscii("pi (here ");

// numbers can be simply appended

buf.append(pi);

// RTL_CONSTASCII_STRINGPARAM ()

// lets the compiler count the stringlength, so this is more efficient than
// the above appendAscii call, where the length of the string must be calculated at
// runtime

buf.appendAscii (RTL _CONSTASCII STRINGPARAM(") multiplied with "));
buf.append(n);

buf.appendAscii (RTL_CONSTASCII STRINGPARAM (" gives "));

buf.append((double) (n * pi));

buf.appendAscii (RTL CONSTASCII STRINGPARAM("."));

// now transfer the buffer into the string.
// afterwards buffer is empty and may be reused again !
OUString string = buf.makeStringAndClear();

OpenOffice.org 2.0 Developer's Guide « May 2005

// You could of course use the OStringBuffer directly to get an OString
OString oString = rtl::0UStringToOString(string , RTL_TEXTENCODING_ASCII US);

// just to print something
printf("%$s\n" ,oString.getStr());

Establishing Interprocess Connections

Any language binding supported by UNO establishes interprocess connections using a local ser-
vice manager to create the services necessary to connect to the office. Refer to chapter 3.3.1 Profes-
sional UNO - UNO Concepts - UNO Interprocess Connections for additional information. The fol-
lowing client program connects to a running office and retrieves the
com.sun.star.lang.XMultiServiceFactory in C++:

(ProfUNO/CppBinding/office connect.cxx)

#include <stdio.h>

#include <cppuhelper/bootstrap.hxx>
#include <com/sun/star/bridge/XUnoUrlResolver.hpp>
#include <com/sun/star/lang/XMultiServiceFactory.hpp>

using namespace com::sun::star::uno;
using namespace com::sun::star::lang;
using namespace com::sun::star::bridge;
using namespace rtl;

using namespace cppu;

int main()

{

// create the initial component context
Reference< XComponentContext > rComponentContext =
defaultBootstrap InitialComponentContext () ;

// retrieve the service manager from the context
Reference< XMultiComponentFactory > rServiceManager =
rComponentContext->getServiceManager () ;

// instantiate a sample service with the service manager.
Reference< XInterface > rlInstance =
rServiceManager->createInstanceWithContext (
OUString::createFromAscii ("com.sun.star.bridge.UnoUrlResolver"),
rComponentContext);

// Query for the XUnoUrlResolver interface
Reference< XUnoUrlResolver > rResolver(rInstance, UNO_QUERY);

if(! rResolver.is())

{
printf ("Error: Couldn't instantiate com.sun.star.bridge.UnoUrlResolver service\n");
return 1;

// resolve the uno-URL
rInstance = rResolver->resolve(OUString::createFromAscii (
"uno:socket,host=localhost,port=2002;urp; StarOffice.ServiceManager"));

if(! rInstance.is())

{
printf("StarOffice.ServiceManager is not exported from remote process\n");
return 1;

}

// query for the simpler XMultiServiceFactory interface, sufficient for scripting
Reference< XMultiServiceFactory > rOfficeServiceManager (rInstance, UNO_QUERY) ;

if(! rOfficeServiceManager.is())

{
printf("XMultiServiceFactory interface is not exported\n");
return 1;

}

printf ("Connected sucessfully to the office\n");
}
catch(Exception &e)
{
0String o = 0OUStringToOString(e.Message, RTL TEXTENCODING ASCII US);
printf("Error: %$s\n", o.pData->buffer);
return 1;

133

134

}

return 0;

Transparent Use of Office UNO Components

When writing C++ client applications, the office component context can be obtained in a more
transparent way. For more details see section 3.4.1 Professional UNO - UNO Language Bindings -
Java Language Binding - Transparent Use of Office UNO Components.

The bootstrap function

Also for C++, a bootstrap function is provided, which bootstraps the component context from a
UNO installation. An example for a simple client application shows the following code snipplet:
(ProfUNO/SimpleBootstrap_cpp/SimpleBootstrap cpp.cxx)

// get the remote office component context
Reference< XComponentContext > xContext (::cppu::bootstrap());

// get the remote office service manager
Reference< XMultiComponentFactory > xServiceManager (
xContext->getServiceManager ());

// get an instance of the remote office desktop UNO service
// and query the XComponentLoader interface
Reference < XComponentLoader > xComponentLoader (

xServiceManager->createInstanceWithContext (OUString (

RTL CONSTASCII USTRINGPARAM("com.sun.star.frame.Desktop")),

xContext), UNO_QUERY THROW) ;
The ::cppu: :bootstrap () function is implemented in a similar way as the Java
com.sun.star.comp.helper.Bootstrap.bootstrap () method. It first bootstraps a local compo-
nent context by calling the ::cppu::defaultBootstrap InitialComponentContext () function
and then tries to establish a named pipe connection to a running office by using the
com.sun.star.bridge.UnoUrlResolver service. If no office is running, an office process is

started. If the connection succeeds, the remote component context is returned.

The : :cppu: :bootstrap () function is only available since OpenOffice.org 2.0.

SDK tooling

For convenience , the OpenOffice.org Software Development Kit (SDK) provides some tooling for
writing C++ client applications.

Application Loader

A C++ client application that uses UNO is linked to the C++ UNO libraries, which can be found in
the program directory of a UNO installation. When running the client application, the C++ UNO
libraries are found only, if the UNO program directory is included in the PATH (Windows) or

1D LIBRARY PATH (Unix/Linux) environment variable.

As this requires the knowledge of the location of a UNO installation, the SDK provides an applica-
tion loader (unoapploader.exe for Windows, unoapploader for Unix/Linux), which detects a
UNO installation on the system and adds the program directory of the UNO installation to the
PATH/ LD LIBRARY PATH environment variable. After that, the application process is loaded and
started, whereby the new process inherits the environment of the calling process, including the
modified PATH/ LD LIBRARY PATH environment variable.

The SDK tooling allows to build a client executable file (e.g. SimpleBootstrap cpp for
Unix/Linux), which can be invoked by

OpenOffice.org 2.0 Developer's Guide « May 2005

./SimpleBootstrap cpp

In this case, the SimpleBootstrap cpp executable is simply the renamed unoapploader execut-
able. All the application code is part of a second executable file, which must have the same name as
the first executable, but prefixed by a underscore ' '; that means in the example above the second
executable is named SimpleBootstrap_cpp.

On the Unix/Linux platforms the application loader writes error messages to the stderr stream.
On the Windows platform error messages are written to the error file <application name>-
error.log in the application's executable file directory. If this fails, the error file is written to the
directory designated for temporary files.

Finding a UNO Installation

A UNO installation can be specified by the user by setting the UNO_PATH environment variable to
the program directory of a UNO installation, e.g.

setenv UNO_PATH /opt/OpenOffice.org/program
If no UNO installation is specified by the user, the default installation on the system is taken.

On the Windows platform, the default installation is read from the default value of the key 'Soft-
ware\OpenOffice.org\UNO\InstallPath' from the root key HKEY CURRENT USER in the Win-
dows Registry. If this key is missing, the key is read from the root key HKEY LOCAL MACHINE.

On the Unix/Linux platforms, the default installation is found from the PATH environment vari-
able. This requires that the soffice executable or a symbolic link is in one of the directories listed
in the PATH environment variable.

Type Mappings

Mapping of Simple Types

The following table shows the mapping of simple UNO types to the corresponding C++ types.

135

136

UNO C++

void void

boolean sal Bool

byte sal Int8

short sal Intlé

unsigned short sal uIntlé

long sal Int32

unsigned long sal uInt32

hyper sal_Into64

unsigned hyper sal uInt64

float float

double double

char sal Unicode

string rtl::0UString

type com: :sun::star::uno: :Type
any com::sun::star::uno: :Any

For historic reasons, the UNO type boolean is mapped to some C++ type sal Bool, which has
two distinct values sal False and sal True, and which need not be the C++ bool type. The
mapping between the values of UNO boolean and sal False and sal True is straightforward,
but it is an error to use any potential value of sal Bool that is distinct from both sal False and

sal True.

The UNO integer types are mapped to C++ integer types with ranges that are guaranteed to be at
least as large as the ranges of the corresponding UNO types. However, the ranges of the C++ types
might be larger, in which case it would be an error to use values outside of the range of the corre-
sponding UNO types within the context of UNO. Currently, it would not be possible to create C++
language bindings for C++ environments that offer no suitable integral types that meet the min-
imal range guarantees.

The UNO floating point types float and double are mapped to C++ floating point types float
and double, which must be capable of representing at least all the values of the corresponding
UNO types. However, the C++ types might be capable of representing more values, for which it is
implementation-defined how they are handled in the context of UNO. Currently, it would not be
possible to create C++ language bindings for C++ environments that offer no suitable float and
double types.

The UNO char type is mapped to the integral C++ type sal Unicode, which is guaranteed to at
least encompass the range from 0 to 65535. Values of UNO char are mapped to values of

sal Unicode in the obvious manner. If the range of sal Unicode is larger, it is an error to use
values outside of that range.

For the C++ typedef types sal Bool, sal Int8,sal Intl6,sal Int32,sal Int64,and

sal Unicode, it is guaranteed that no two of them are synonyms for the same fundamental C++
type. This guarantee does not extend to the three types sal uInt8, sal uIntl6,and sal uInt32,
however.

Mapping of String

The mapping between the UNO stringtype and rtl::0UString is straightforward, except for
two details:

The length of a string that can be represented by an rtl::0UString object is limited. It is an
error to use a longer UNO string value in the context of the C++ language binding.

OpenOffice.org 2.0 Developer's Guide « May 2005

- An object of type rtl::0UString can represent an arbitrary sequence of UTF-16 code units,
whereas a value of the UNO string type is an arbitrary sequence of Unicode scalar values.
This only matters in so far as some individual UTF-16 code units (namely the individual high-
and low-surrogate code points in the range D800-DFFF) have no corresponding Unicode scalar
values, and are thus forbidden in the context of UNO. For example, the C++ string

static sal Unicode const chars[] = { 0xD800 };
rtl::0UString (chars, 1);

is illegal in this context, while the string

static sal Unicode const chars[] = { 0xD800, 0xDC00 };

rtl::0UString (chars, 2);

would be legal. See www.unicode.org for more information on the details of Unicode.

Mapping of Type

The UNO type type is mapped to com: :sun::star::uno: :Type. It holds the name of a type and
the com.sun.star.uno.TypeClass. The type allows you to obtain a

com::sun::star::uno: :TypeDescription that contains all the information defined in the IDL.
For a given type, a corresponding com: :sun: :star:: Type object can be obtained with the over-
loaded getCppuType () function, or, for interface types only, with the static type () function:

// get the type of sal Int32
com::sun::star::uno::Type intType = getCppuType (static_cast< sal_ Int32 * >(0));

// get the type of a string
com::sun::star::uno::Type stringType = getCppuType (static cast< rtl::0UString * >(0));

// get the type of the XEnumeration interface
Type xenumerationTypel = getCppuType (

static_cast< com::sun::star::uno::Reference< com::sun::star::container::XEnumeration > * >(0));
Type xenumerationType2 = com::sun::star::container::XEnumeration::static_type();
The above code is useful to write template functions. Some getCppuType () functions would be
ambiguous. There are specialized functions: getVoidCppuType (), getBooleanCppuType (),
getCharCppuType ()to handle the ambiguous functions. The functions are implemented inline and
introduced by headers that have been generated from the type library.

Mapping of Any

The IDL any is mapped to com::sun::star::uno::Any. It holds an instance of an arbitrary UNO type.
Only UNO types can be stored within the any, because the data from the type library are required
for any handling.

A default constructed Any contains the void type and no value. You can assign a value to the Any
using the operator <<= and retrieve a value using the operator >>=.

// default construct an any
Any any;

sal _Int32 n = 3;

// Store the value into the any
any <<= n;

// extract the value again
sal_Int32 n2;

any >>= n2;

assert(n2 == n);

assert(3 == n2);

The extraction operator >>= carries out widening conversions when no loss of data can occur, but
data cannot be directed downward. If the extraction was successful, the operator returns

sal True, otherwise sal False.

Any any;

sal Intlé n = 3;
any <<= n;

137

138

sal Int8 aByte = 0;
sal Intl6 aShort =

0;
sal:IntBZ along = 0;

// this will succeed, conversion from intl6 to int32 is OK.
assert(any >>= along);
assert(3 == along);

// this will succeed, conversion from intlé6 to intl6 is OK
assert (any >>= aShort);
assert (3 == aShort

// the following two assertions will FAIL, because conversion
// from intl6 to int8 may involve loss of data..

// Even if a downcast is possible for a certain value, the operator refuses to work

assert (any >>= aByte);

assert(3 == aByte);

Instead of using the operator for extracting, you can also get a pointer to the data within the Any.
This may be faster, but it is more complicated to use. With the pointer, care has to be used during
casting and proper type handling, and the lifetime of the Any must exceed the pointer usage.

Any a = ...;

if (a.getTypeClass() == TypeClass LONG && 3 == *(sal Int32 *)a.getValue())
{

}

You can also construct an Any from a pointer to a C++ UNO type that can be useful. For instance:

Any foo ()
{
sal_Int32 i = 3;
if(...)
i=..;
return Any(&1, getCppuType(&i));

Mapping of Struct Types

A plain UNO struct type is mapped to a C++ struct with the same name. Each member of the UNO
struct type is mapped to a public data member with the same name and corresponding type. The
C++ struct provides a default constructor which initializes all members with default values, and a
constructor which takes explicit values for all members. If a plain struct type inherits from another
struct type, the generated C++ struct derives from the C++ struct corresponding to the inherited
UNO struct type.

A polymorphic UNO struct type template with a list of type parameters is mapped to a C++ struct
template with a corresponding list of type parameters. For example, the C++ template corre-
sponding to com.sun.star.beans.Optional looks something like

template< typename T > struct Optional {
sal_Bool IsPresent;
T Value;

Optional () : IsPresent (sal_False), Value() {}

Optional(sal_Bool theIsPresent, T const & theValue): IsPresent (thelIsPresent), Value (theValue) {}
}i
As can be seen in the example above, the default constructor uses default initialization to give
values to any parametric data members. This has a number of consequences:

Some compilers do not implement default initialization correctly for all types. For example,
Microsoft Visual C++ .NET 2003 leaves objects of primitive types uninitialized, instead of zero-
initializing them. (Which means, for example, that after Optional<sal Int32> o; the expres-
sion o.Value has an undefined value, instead of being zero.)

The default value of a UNO enum type is its first member. A (deprecated) feature of UNO
enum types is to give specific numeric values to individual members. Now, ifa UNO enum
type whose first member has a numeric value other than zero is used as the type of a parametric
member, default-initializing that member will give it the numeric value zero, even if zero does

OpenOffice.org 2.0 Developer's Guide « May 2005

not correspond to the default member of the UNO enum type (it need not even correspond to
any member of the UNO enum type).

Another pitfall is that a parametric member of type any of a default-constructed polymorphic
struct type instance (think Optional<Any> o; o.Value in C++, new

Optional<Object>() .Value in Java 1.5) has different values in the C++ language binding and
the Java language binding. In C++, it contains void, whereas in Java it contains a null reference
of type XInterface. To avoid any problems, it is best not to rely on the default constructor in
such situations.

On some platforms, the C++ typedef types sal Unicode and sal ulIntlé6 are synonyms for the
same fundamental C++ type. This leads to problems when either of those types is used as a type
argument of a polymorphic struct type. For example

getCppuType (static_cast< com::sun::star::beans::0ptional< sal Unicode > >(0))

and

getCppuType (static_cast< com::sun::star::beans::0Optional< sal uIntlé > >(0)

cannot return different data for the two different UNO types (as the two function calls are to the
same identical function on those platforms). The chosen solution is to generally forbid the (depre-
cated) UNO types unsigned short, unsigned int,and unsigned long as type arguments of
polymorphic struct types.

Mapping of Interface Types

A value of a UNO interface type (which is a null reference or a reference to an object implementing
the given interface type) is mapped to the template class:

template< class t >

com: :sun::star::uno: :Reference< t >

The template is used to get a type safe interface reference, because only a correctly typed interface
pointer can be assigned to the reference. The example below assigns an instance of the desktop
service to the rDesktop reference:

// the xSMgr reference gets constructed somehow

{

// construct a deskop object and acquire it
Reference< XInterface > rDesktop = xSMgr->createlnstance (
OUString::createFromAscii ("com.sun.star.frame.Desktop!"”)) ;

}}'reference goes out of scope now, release is called on the interface
}
The constructor of Reference calls acquire () on the interface and the destructor calls release ()
on the interface. These references are often called smart pointers. Always use the Reference tem-
plate consistently to avoid reference counting bugs.

The rReference class makes it simple to invoke queryInterface () for a certain type:

// construct a deskop object and acquire it
Reference< XInterface > rDesktop = xSMgr->createlnstance (
OUString: :createFromAscii ("com.sun.star.frame.Desktop")) ;

// query it for the XFramelLoader interface
Reference< XFrameLoader > rLoader(rDesktop , UNO_QUERY) ;

// check, if the frameloader interface is supported
if(rLoader.is())
{
// now do something with the frame loader
}
The UNO QUERY is a dummy parameter that tells the constructor to query the first constructor argu-
ment for the xFrameLoader interface. If the queryInterface () returns successfully, it is assigned

139

http://com.sun.star.frame.Desktop/

@

140

to the rLoader reference. You can check if querying was successful by calling is () on the new
reference.

Methods on interfaces can be invoked using the operator ->:

xSMgr->createlInstance(...);

The operator ->() returns the interface pointer without acquiring it, that is, without incre-
menting the refcount.

If you need the direct pointer to an interface for some purpose, you can also call get () at the reference class.

You can explicitly release the interface reference by calling clear () at the reference or by assigning
a default constructed reference.

You can check if two interface references belong to the same object using the operator ==.

Mapping of Sequence Types

An IDL sequence is mapped to:

template< class t >
com: :sun::star::uno: :Sequence< t >

The sequence class is a reference to a reference counted handle that is allocated on the heap.

The sequence follows a copy-on-modify strategy. If a sequence is about to be modified, it is
checked if the reference count of the sequence is 1. If this is the case, it gets modified directly, oth-
erwise a copy of the sequence is created that has a reference count of 1.

A sequence can be created with an arbitrary UNO type as element type, but do not use a non-UNO
type. The full reflection data provided by the type library are needed for construction, destruction
and comparison.

You can construct a sequence with an initial number of elements. Each element is default con-
structed.

{
// create an integer sequence with 3 elements,
// elements default to zero.
Sequence< sal_Int32 > seqInt(3);

// get a read/write array pointer (this method checks for
// the refcount and does a copy on demand) .
sal_Int32 *pArray = seqlnt.getArray();

// if you know, that the refocunt is one

// as in this case, where the sequence has just been

// constructed, you could avoid the check,

// which is a C-call overhead,

// by writing sal Int32 *pArray = (sal Int32*) seglInt.getConstArray();

// modify the members
pArray([0] ;
pArray([1]
pArray([2]

[
w Ul

;
;
;

You can also initialize a sequence from an array of the same type by using a different constructor.
The new sequence is allocated on the heap and all elements are copied from the source.

{
sal_Int32 sourceArray[3] = {3,5,3};

// result is the same as above, but we initialize from a buffer.

Sequence< sal Int32 > seqlnt(sourceArray , 3);

}
Complex UNO types like structs can be stored within sequences, too:

{

// construct a sequence of Property structs,

OpenOffice.org 2.0 Developer's Guide « May 2005

// the structs are default constructed

Sequence< Property > segProperty(2);
segProperty[0] .Name = OUString::createFromAscii("A");
seqgProperty[0] .Handle = 0;

segProperty[l] .Name = OUString::createFromAscii("B");
segProperty[1l] .Handle = 1;

// copy construct the sequence (The refcount is raised)
Sequence< Property > seqgProperty2 = seqgProperty;

// access a sequence

for(sal Int32 i = 0 ; i < seqProperty.getLength() ; i ++)
{
// Please NOTE : seqgProperty.getArray() would also work, but
// it is more expensive, because a
// unnessecary copy construction
// of the sequence takes place.

printf("%d\n" , segProperty.getConstArray() [i].Handle);

}

The size of sequences can be changed using the realloc () method, which takes the new number

of elements as a parameter. For instance:

// construct an empty sequence
Sequence < Any > anySequence;

// get your enumeration from somewhere
Reference< XEnumeration > rEnum = ...;

// iterate over the enumeration

while (rEnum->hasMoreElements ())

{
anySequence.realloc(anySequence.getLength() + 1);
anySequence [anySequence.getLength () -1] = rEnum->nextElement () ;

}

The above code shows an enumeration is transformed into a sequence,using an inefficient method.

The realloc () default constructs a new element at the end of the sequence. If the sequence is

shrunk by realloc, the elements at the end are destroyed.

The sequence is meant as a transportation container only, therefore it lacks methods for efficient
insertion and removal of elements. Use a C++ Standard Template Library vector as an interme-
diate container to manipulate a list of elements and finally copy the elements into the sequence.

Sequences of a specific type are a fully supported UNO type. There can also be a sequence of

sequences. This is similar to a multidimensional array with the exception that each row may vary

in length. For instance:
{

sal_Int32 al 1 = { 1,2,3 }, b[] = {4,5,6}, cl] = {7,8,9,10};
Sequence< Sequence< sal_Int32 > > aaSeq (3);

aaSeq[0] = Sequence< sal_Int32 >(a , 3);

aaSeq[l] = Sequence< sal_Int32 >(b , 3);

aaSeq[2] = Sequence< sal_Int32 >(c , 4);

}

is a valid sequence of sequence< sal_Int32>.

The maximal length of a com: :sun::star::uno::Sequence is limited; therefore, it is an error ifa

UNO sequence that is too long is used in the context of the C++ language binding.

Mapping of Services

A new-style service is mapped to a C++ class with the same name. The class has one or more

public static member functions that correspond to the explicit or implicit constructors of the ser-

vice.

For a new-style service with a given interface type XIfc, an explicit constructor of the form

name ([in] Typel argl, [in] Type2 arg2) raises (Exceptionl, ..., ExceptionN);

is represented by the C++ member function

141

142

public:

static com::sun::star::uno::Reference< XIfc > name (
com: :sun::star::uno: :Reference< com::sun::star::uno::XComponentContext > const & context,
Typel argl, Type2 arg2)
throw (Exceptionl, ..., ExceptionN, com::sun::star::uno::RuntimeException) { ... }

If a service constructor has a rest parameter (any. . .), it is mapped to a parameter of type

com::sun::star::uno::Sequence< com::sun::star::uno::Any > const &in C++.

If a new-style service has an implicit constructor, the corresponding C++ member function is of the
form

public:

static com::sun::star::uno::Reference< XIfc > create(
com: :sun::star::uno: :Reference< com::sun::star::uno::XComponentContext > const & context)
throw (com::sun::star::uno::RuntimeException) { ... }

The semantics of both explicit and implicit service constructors in C++ are as follows. They are the
same as for Java:

- The first argument to a service constructor is always a
com.sun.star.uno.XComponentContext, which must be a non-null reference. Any further
arguments are used to initialize the created service (see below).

. The service constructor first uses com.sun.star.uno.XComponentContext:getServiceMan-
ager to obtain a service manager (a com.sun.star.lang.xMultiComponentFactory) from the
given component context.

. The service constructor then uses com.sun.star.lang.xXMultiComponentFactory:createIn-
stanceWithArgumentsAndContext to create a service instance, passing it the list of arguments
without the initial XxComponentContext. If the service constructor has a single rest parameter, its
sequence of any values is used directly, otherwise the given arguments are made into a
sequence of any values. In the case of an implicit service constructor, no arguments are passed,
and com.sun.star.lang.XMultiComponentFactory:createInstanceWithContext is used
instead.

. Ifany of the above steps fails with an exception that the service constructor may throw
(according to its exception specification), the service constructor also fails by throwing that
exception. Otherwise, if any of the above steps fails with an exception that the service con-
structor may not throw, the service constructor instead fails by throwing a
com.sun.star.uno.DeploymentException. Finally, if no service instance could be created
(because either the given component context has no service manager, or the service manager
does not support the requested service), the service constructor fails by throwing a
com.sun.star.uno.DeploymentException. The net effect is that a service constructor either
returns a non-null instance of the requested service, or throws an exception; a service con-
structor will never return a null instance.

Old-style services are not mapped into the C++ language binding.

Mapping of Singletons
A new-style singleton of the form
singleton Name: XIfc;

is mapped to a C++ class with the same name. The class has a single member function

public:
static com::sun::star::uno::Reference< XIfc > get(
com: :sun::star::uno: :Reference< com::sun::star::uno::XComponentContext > const & context)
throw (com::sun::star::uno::RuntimeException) { ... }
The semantics of such a singleton getter function in C++ are as follows (they are the same as for

Java):

- The com.sun.star.uno.XComponentContext argument must be non-null.

OpenOffice.org 2.0 Developer's Guide « May 2005

- The singleton getter uses com.sun.star.uno.XComponentContext:getValueByName to obtain
the singleton instance (within the “/singletons/” name space).

. Ifno singleton instance could be obtained, the singleton getter fails by throwing a
com.sun.star.uno.DeploymentException. The net effect is that a singleton getter either
returns the requested non-null singleton instance, or throws an exception; a singleton getter will
never return a null instance.

Old-style services are not mapped into the C++ language binding.

Using Weak References

The C++ binding offers a method to hold UNO objects weakly, that is, not holding a hard reference
to it. A hard reference prevents an object from being destroyed, whereas an object that is held
weakly can be deleted anytime. The advantage of weak references is used to avoid cyclic refer-
ences between objects.

An object must actively support weak references by supporting the com.sun.star.uno.XWeak
interface. The concept is explained in detail in chapter 3.3.8 Professional UNO - UNO Concepts - Life-
time of UNO Obyjects.

Weak references are often used for caching. For instance, if you want to reuse an existing object,
but do not want to hold it forever to avoid cyclic references.

Weak references are implemented as a template class:

template< class t >
class com::sun::star::uno::WeakReference<t>

You can simply assign weak references to hard references and conversely. The following examples
stress this:

// forward declaration of a function that
Reference< XFoo > getFoo();

int main ()
{
// default construct a weak reference.
// this reference is empty
WeakReference < XFoo > weakFoo;
{
// obtain a hard reference to an XFoo object
Reference< XFoo > hardFoo = getFoo();
assert (hardFoo.is());

// assign the hard reference to weak referencecount
weakFoo = hardFoo;

// the hardFoo reference goes out of scope. The object itself
// is now destroyed, if no one else keeps a reference to it.
// Nothing happens, if someone else still keeps a reference to it

}

// now make the reference hard again
Reference< XFoo > hardFoo2 = weakFoo;

// check, if this was successful

if (hardFoo2.is ())

{
// the object is still alive, you can invoke calls on it again
hardFoo2->foo () ;

}

else

{ // the objects has died, you can't do anything with it anymore.
} }
A call on a weak reference can not be invoked directly. Make the weak reference hard and check
whether it succeeded or not. You never know if you will get the reference, therefore always handle

both cases properly.

143

It is more expensive to use weak references instead of hard references. When assigning a weak
reference to a hard reference, a mutex gets locked and some heap allocation may occur. When the
object is located in a different process, at least one remote call takes place, meaning an overhead of
approximately a millisecond.

The XWeak mechanism does not support notification at object destruction. For this purpose,
objects must export XComponent and add com.sun.star.lang.xEventListener.

Exception Handling in C++

For throwing and catching of UNO exceptions, use the normal C++ exception handling mecha-
nisms. Calls to UNO interfaces may only throw the com::sun::star::uno::Exception or
derived exceptions. The following example catches every possible exception:

try
{

Reference< XInterface > rInitialObject =

xUnoUrlResolver->resolve (OUString::createFromAsci (
“uno:socket,host=localhost,port=2002;urp; StarOffice.ServiceManager”));

}
catch(com::sun::star::uno::Exception &e)
{

0String o = OUStringToOString(e.Message, RTL_TEXTENCODING_ASCII US);

printf("An error occurred: $%$s\n", o.pData->buffer);

}

If you want to react differently for each possible exception type, look up the exceptions that may be
thrown by a certain method. For instance the resolve () method in
com.sun.star.bridge.XUnoUrlResolver is allowed to throw three kinds of exceptions. Catch
each exception type separately:

try
{
Reference< XInterface > rInitialObject =
xUnoUrlResolver->resolve (OUString::createFromAsci (
“uno:socket,host=localhost,port=2002;urp; StarOffice.ServiceManager”));
}
catch(ConnectionSetupException &e)
{
OString o = OUStringToOString(e.Message, RTL_TEXTENCODING ASCII US);
printf("%s\n", o.pData->buffer);
printf("couldn't access local resource (possible security resons)\n");
}
catch(NoConnectException &e)
{
0String o = OUStringToOString(e.Message, RTL TEXTENCODING ASCII US);
printf("%$s\n", o.pData->buffer);
printf("no server listening on the resource\n");
}
catch(IllegalArgumentException &e)
{
OString o = OUStringToOString(e.Message, RTL_TEXTENCODING_ASCII US);
printf("%s\n", o.pData->buffer);
printf("uno URL invalid\n");
}
catch(RuntimeException & e
{
0String o = OUStringToOString(e.Message, RTL_TEXTENCODING_ASCII US);
printf("%s\n", o.pData->buffer);
printf ("an unknown error has occurred\n");

}

When implementing your own UNO objects (see 4.6 Writing UNO Components - C++ Component),
throw exceptions using the normal C++ throw statement:

void MyUnoObject::initialize(const Sequence< Any > & args.getLength()) throw(Exception
{
// we expect 2 elements in this sequence
if(2 !'= args.getLength())
{
// create an error message
OUStringBuffer buf;
buf.appendAscii (“MyUnoObject::initialize, expected 2 args, got ”);
buf.append(args.getLength());
buf.append(“.”);

144 OpenOffice.org 2.0 Developer's Guide « May 2005

// throw the exception
throw Exception(buf.makeStringAndClear() , *this);

}

Note that only exceptions derived from com: :sun::star::uno::Exception may be thrown at
UNO interface methods. Other exceptions (for instance the C++ std::exception) cannot be bridged
by the UNO runtime if the caller and called object are not within the same UNO Runtime Environ-
ment. Moreover, most current Unix C++ compilers, for instance gcc 3.0.x, do not compile code.
During compilation, exception specifications are loosen in derived classes by throwing exceptions
other than the exceptions specified in the interface that it is derived. Throwing unspecified excep-
tions leads to a std::unexpected exception and causes the program to abort on Unix systems.

3.4.3 OpenOffice.org Basic

OpenOffice.org Basic provides access to the OpenOffice.org API from within the office application.
It hides the complexity of interfaces and simplifies the use of properties by making UNO objects
look like Basic objects. It offers convenient Runtime Library (RTL) functions and special Basic
properties for UNO. Furthermore, Basic procedures can be easily hooked up to GUI elements, such
as menus, toolbar icons and GUI event handlers.

This chapter describes how to access UNO using the OpenOffice.org Basic scripting language. In
the following sections, OpenOffice.org Basic is referred to as Basic.

Handling UNO Objects

Accessing UNO Services

UNO objects are used through their interface methods and properties. Basic simplifies this by
mapping UNO interfaces and properties to Basic object methods and properties.

First, in Basic it is not necessary to distinguish between the different interfaces an object supports
when calling a method. The following illustration shows an example of an UNO service that sup-
ports three interfaces:

XFoo1

double getMore (void)
double getLess (void)
void doNothing (void)

Example XFoo2
<<service>>

void doSomething (void)
void doSomethingElse (int nElse)

XFoo3

int getlt ()
void setlt (int nlt)

Hllustration 3.17: Basic Hides Interfaces

In Java and C++, it is necessary to obtain a reference to each interface before calling one of its
methods. In Basic, every method of every supported interface can be called directly at the object
without querying for the appropriate interface in advance. The '.' operator is used:

145

' Basic
oExample = getExampleObjectFromSomewhere ()

oExample.doNothing () ' Calls method doNothing of XFool
oExample.doSomething () ' Calls method doSomething of XFoo2
oExample.doSomethingElse (42) ' Calls method doSomethingElse of XFoo2

Additionally, OpenOffice.org Basic interprets pairs of get and set methods at UNO objects as Basic
object properties if they follow this pattern:

SomeType getSomeProperty ()
void setSomeProperty (SomeType aValue)

In this pattern, OpenOffice.org Basic offers a property of type SomeType named SomeProperty.
This functionality is based on the com.sun.star.beans.Introspection service. For additional
details, see 5.2.3 Advanced UNO - Language Bindings - UNO Reflection API.

The get and set methods can always be used directly. In our example service above, the methods
getIt() and setIt (), orread and write a Basic property 1t are used:

Dim x as Integer
x = oExample.getIt () ' Calls getIt method of XFoo3

' is the same as

x = oExample.It ' Read property It represented by XFoo3
oExample.setIt(x) ' Calls setIt method of XFoo3

' is the same as

oExample.It = x ' Modify property It represented by XFoo3

If there is only a get method, but no associated set method, the property is considered to be read

only.
Dim x as Integer, y as Integer
x = oExample.getMore () ' Calls getMore method of XFool
y = oExample.getLess () ' Calls getLess method of XFool
' is the same as
X = oExample.More ' Read property More represented by XFool
y = oExample.Less ' Read property Less represented by XFool
' but
oExample.More = x ' Runtime error “Property is read only”
oExample.Less = y ' Runtime error “Property is read only”

Properties an object provides through com.sun.star.beans.XPropertySet are available through
the . operator. The methods of com.sun.star.beans.XPropertySet can be used also. The object
oExample2 in the following example has three integer properties Vvaluel, Value2 and Value3:

Dim x as Integer, y as Integer, z as Integer
X = oExample2.Valuel
y = oExample2.Value2
z = oExample2.Value3

' is the same as

oExample2.getPropertyValue (“Valuel”)
oExample?2.getPropertyValue (“Value2”)
oExample2.getPropertyValue (“Value3”)

N
{1

' and

oExample2.Valuel
oExample?2.Value2
oExample?2.Value3

Il
X

([}
N

' is the same as
oExample?2.setPropertyValue(“Valuel”,)

b3
oExample?2.setPropertyValue(“Value2”, y)
oExample2.setPropertyValue (“Value3”, z)

146 OpenOffice.org 2.0 Developer's Guide « May 2005

Basic uses com.sun.star.container.xXNameAccess to provide named elements in a collection
through the . operator. However, xNameAccess only provides read access. If a collection offers
write access through com.sun.star.container.xNameReplace Or

com.sun.star.container.XNameContainer, use the appropriate methods explicitly:
' oNameAccessible is an object that supports XNameAccess
' including the names “Valuel”, “Value2”

x = oNameAccessible.Valuel
y = oNameAccessible.Value2

' is the same as

b

= oNameAccessible.getByName (“Valuel”)
y = oNameAccessible.getByName (“Value2”)

' but
oNameAccessible.Valuel = x ' Runtime Error, Valuel cannot be changed
oNameAccessible.Value2 = y ' Runtime Error, Value2 cannot be changed

' oNameReplace is an object that supports XNameReplace
' replaceByName () sets the element Valuel to 42
oNameReplace.replaceByName ("Valuel", 42)

Instantiating UNO Services

In Basic, instantiate services using the Basic Runtime Library (RTL) function createUnoService ().
This function expects a fully qualified service name and returns an object supporting this service, if
it is available:

oSimpleFileAccess = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")

This call instantiates the com.sun.star.ucb.SimpleFileAccess service. To ensure that the func-
tion was successful, the returned object can be checked with the TsNul1l function:

oSimpleFileAccess = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")
bError = IsNull(oSimpleFileAccess) ' bError is set to False

oNoService = CreateUnoService("com.sun.star.nowhere.ThisServiceDoesNotExist")

bError = IsNull(oNoService) ' bError is set to True
Instead of using CreateUnoService () to instantiate a service, it is also possible to get the global
UNO com.sun.star.lang.ServiceManager of the OpenOffice.org process by calling GetPro-
cessServiceManager (). Once obtained, use createInstance () directly:

oServiceMgr = GetProcessServiceManager ()
oSimpleFileAccess = oServiceMgr.createlnstance("com.sun.star.ucb.SimpleFileAccess")

' is the same as

oSimpleFileAccess = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")

The advantage of GetProcessServiceManager () is that additional information and pass in argu-
ments is received when services are instantiated using the service manager. For instance, to ini-
tialize a service with arguments, the createInstanceWithArguments () method of
com.sun.star.lang.XMultiServiceFactory has to be used at the service manager, because there
is no appropriate Basic RTL function to do that. Example:

Dim args (1)

args (0) = "Important information"

args(l) = "Even more important information"

oService = oServiceMgr.createInstanceWithArguments

("com.sun.star.nowhere.ServiceThatNeedsInitialization", args())

The object returned by GetProcessServiceManager () is a normal Basic UNO object supporting
com.sun.star.lang.ServiceManager. Its properties and methods are accessed as described
above.

In addition, the Basic RTL provides special properties as API entry points. They are described in
more detail in /1.3 OpenOlffice.org Basic and Dialogs - Features of OpenOlffice.org Basic:

147

148

OpenOffice.org Basic RTL Property Description

ThisComponent Only exists in Basic code which is embedded in a Writer,
Calc, Draw or Impress document. It contains the document
model the Basic code is embedded in.

StarDesktop The com.sun.star.frame.Desktop singleton of the of-
fice application. It loads document components and handles
the document windows. For instance, the document in the

top window can be retrieved using
oDoc = StarDesktop.CurrentComponent

Getting Information about UNO Objects

The Basic RTL retrieves information about UNO objects. There are functions to evaluate objects
during runtime and object properties used to inspect objects during debugging.

Checking for interfaces during runtime

Although Basic does not support the queryInterface concept like C++ and Java, it can be useful
to know if a certain interface is supported by a UNO Basic object or not. The function HasUnoInt-
erfaces () detects this.

The first parameter HasUnoInterfaces () expects the object that should be tested. Parameter(s) of
one or more fully qualified interface names can be passed to the function next. The function returns
True if all these interfaces are supported by the object, otherwise False.

Sub Main
Dim oSimpleFileAccess
oSimpleFileAccess = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")

Dim bSuccess

Dim IfaceNamel$, IfaceName2$, IfaceName3$
IfaceNamel$ = "com.sun.star.uno.XInterface"
IfaceName2$ "com.sun.star.ucb.XSimpleFileAccess2"
IfaceName3$ "com.sun.star.container.XPropertySet"

bSuccess = HasUnoInterfaces(oSimpleFileAccess, IfaceNamel$)

MsgBox bSuccess ' Displays True because XInterface is supported
bSuccess = HasUnoInterfaces(oSimpleFileAccess, IfaceNamel$, IfaceName2$
MsgBox bSuccess ' Displays True because XInterface

' and XSimpleFileAccess2 are supported

bSuccess = HasUnoInterfaces(oSimpleFileAccess, IfaceName3$
MsgBox bSuccess ' Displays False because XPropertySet is NOT supported

bSuccess = HasUnoInterfaces(oSimpleFileAccess, IfaceNamel$, IfaceName2$, IfaceName3$
MsgBox bSuccess ' Displays False because XPropertySet is NOT supported
End Sub

Testing if an object is a struct during runtime

As described in the section 3.4.3 Professional UNO - UNO Language Bindings - OpenOlfice.org Basic -
Type Mappings - Structs above, structs are handled differently from objects, because they are treated
as values. Use the IsUnoStruct () function to check it the UNO Basic object represents an object
or a struct. This function expects one parameter and returns True if this parameter is a UNO struct,
otherwise False. Example:

Sub Main
Dim bIsStruct
' Instantiate a service
Dim oSimpleFileAccess
oSimpleFileAccess = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")
bIsStruct = IsUnoStruct(oSimpleFileAccess)
MsgBox bIsStruct ' Displays False because oSimpleFileAccess is NO struct
' Instantiate a Property struct
Dim aProperty As New com.sun.star.beans.Property
bIsStruct = IsUnoStruct(aProperty

MsgBox bIsStruct ' Displays True because aProperty is a struct
bIsStruct = IsUnoStruct(42
MsgBox bIsStruct ' Displays False because 42 is NO struct

OpenOffice.org 2.0 Developer's Guide « May 2005

End Sub
Testing objects for identity during runtime

To find out if two UNO OpenOffice.org Basic objects refer to the same UNO object instance, use
the function EqualUnoObjects (). Basic is not able to apply the comparison operator = to argu-
ments of type object, for example, If Objl = Obj2 Then which leads to a runtime error.

Sub Main

Dim bIdentical
Dim oSimpleFileAccess, oSimpleFileAccess2, oSimpleFileAccess3
' Instantiate a service
oSimpleFileAccess = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")

oSimpleFileAccess2 = oSimpleFileAccess ' Copy the object reference
bIdentical = EqualUnoObjects(oSimpleFileAccess, oSimpleFileAccess2)
MsgBox bIdentical ' Displays True because the objects are identical

' Instantiate the service a second time
oSimpleFileAccess3 = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")
bIdentical = EqualUnoObjects(oSimpleFileAccess, oSimpleFileAccess3)
MsgBox bIdentical ' Displays False, oSimpleFileAccess3 is another instance

bIdentical = EqualUnoObjects(oSimpleFileAccess, 42

MsgBox bIdentical ' Displays False, 42 is not even an object
' Instantiate a Property struct

Dim aProperty As New com.sun.star.beans.Property

Dim aProperty2

aProperty2 = aProperty ' Copy the struct
bIdentical = EqualUnoObjects(aProperty, aProperty?2
MsgBox bIdentical ' Displays False because structs are values

' and so aProperty2 is a copy of aProperty
End Sub
Basic hides interfaces behind OpenOffice.org Basic objects that could lead to problems when devel-
opers are using API structures. It can be difficult to understand the API reference and find the cor-
rect method of accessing an object to reach a certain goal.

To assist during development and debugging, every UNO object in OpenOffice.org Basic has spe-
cial properties that provide information about the object structure. These properties are all prefixed
with Dbg to emphasize their use for development and debugging purposes. The type of these
properties is string. To display the properties use the MsgBox function.

Inspecting interfaces during debugging

The Dbg SupportedInterfaces lists all interfaces supported by the object. In the following
example, the object returned by the function GetProcessServiceManager () described in the pre-
vious section is taken as an example object.

oServiceManager = GetProcessServiceManager ()
MsgBox oServiceManager.Dbg_ SupportedInterfaces

This call displays a message box:

149

150

soffice

Supported interfaces by object

"Process Service Manager "
com.zun.star.lang xhulti Zervice Factary
com.zun.star lang XMultiComponent Factary
com.zunstar lang Xservicelnfo
cornsun star lang Xlnitialization
com.zun.star lang xUnoTunnel
com.zunstar.container Xaet

com.sunstar.container. XEnumerationAccess
comzunstar.container XElement Accesz

corsun star container XContent EnumerationAccess
com.sun.star beans XProperty Set
comzunstar lang xTypeProvider
caom.zunstar.unosiieak
com.sun.star lang XComponent

Hllustration 3.18: Dbg_Supportedinterfaces
Property

The list contains all interfaces supported by the object. For interfaces that are derived from other
interfaces, the super interfaces are indented as shown above for com.sun.star.container.XSet,
which is derived from com.sun.star.container.XEnumerationAccess based upon
com.sun.star.container.XElementAccess.

If the text “(ERROR: Not really supported!)” is printed behind an interface name, the implementation of the
object usually has a bug, because the object pretends to support this interface (per
com.sun.star.lang.XTypeProvider, but a query for it fails. For details, see 5.2.3 Advanced UNO - Lan-
guage Bindings - UNO Reflection API).

Inspecting properties during debugging

The Dbg Properties lists all properties supported by the object through
com.sun.star.beans.XPropertySet and through get and set methods that could be mapped to
Basic object properties:

oServiceManager = GetProcessServiceManager ()
MsgBox oServiceManager.Dbg Properties

This code produces a message box like the following example:

soffice

Properties of object
"ProcessServiceManager "
SbxOBJECT Default Context;
5bxOBJECT Registry:

SbxARRAY Available Service Mames;
Sbx STRIMG Imnplermentationiame;
ShxARRAY SupportedService Mames;
SbxOBJECT ElermentType:
SbxOBJECT Property Setinfo;

Shx ARRAY Types;

ShxARRAY Implementationid;
SbxSTRIMG Dbg_Supportedinterfaces;
Sk STRIMG Dbg_ Properties;
5bxSTRIMG Dbg_ Methods

Hllustration 3.19: Dbg_Properties

OpenOffice.org 2.0 Developer's Guide « May 2005

Inspecting Methods During Debugging

The Dbg Methods lists all methods supported by an object. Example:

oServiceManager = GetProcessServiceManager ()
MsgBox oServiceManager.Dbg Methods

This code displays:

IMethods of object

"ProcessServiceManager":

SbxEMPTY queryinterface (SbxOB|ECT) ; 3bx0BJECT createlnstance ¢ 30x3TRIMNG) ;
3bxOBIECT createlnstanceWwith Arguments [SbxSTRIMNG, SExARRAY) ShaARRAY
getAvailable Service Mames Cvoid) ;

SbxOBJECT createlnstancewith Context ¢ SbeSTRIMG, SbxOBIECT) ; SbxOBJECT
createlnstanceWith ArgumentzAndContext (SbxSTRIMG, ShecARRAY, SbxOBJECT) ;
SbxARRAY getAvailable ServiceMames Cvoid) ; SbxSTRIMG getimplementationMane (yvoid) ;
SbxBOOL supportsService { Sbx3TRIMNG) ; SbxARRAY getiupportedServiceMarmes (waid
SbxA0I0 initialize Sbec ARRAY 3) Unknown Sbx-Typel getSomething Sb=ARRAY)
SbxOBJECT getElementType (woid)) SExBOOL hasElements (woid 1 ;

SbxOBJECT createEnumeration ¢ void 1 SbxBO0L has © SExWARIAMT 1 ;

SbxWOID insert (SExWARDAMT 1 Sbxv0ID remave © SbxWARLART I ;

SbxOBJELT createContentEnumeration © SbxSTRIMG 3 ShxARRAY getAvailable ServiceMames
{woid)

SbxOBJECT getProperty Setlnfo (void) ; 5bx%0ID setPropertyvalue { SbxSTRIMG,
SbxWARIANT I ;

SbxEMPTY get Property’alue SbxSTRIMG 3 Sbx010 addProper ty Changelistener

{ SbxSTRIMG, SbxOBJECT 3 ;

SbxV0ID0 removeProperty Changelistener (5t STRIMG, SbecOBJECT) ; SbxWOID
gddetoableChange listener ¢ 30x3TRING, 3bxOBJECT 3 ;

3bx%0I0 removevetoable Changelistener ¢ SbxSTRIMG, SbxOEIECT) ; SbxARRAY getTypes
Cwoid 7 ;

SbxARRAY getimplementation!d ¢vaid) 0 SbeOBIECT queryAdapter ¢ woid) ;

SbxNOID0 dispose (woid 3 Sbe010 addEventlistensr (S OBECT)

Sk 010 remove Eventlistener SbxOBJECT)

Hllustration 3.20: Dbg Methods

The notations used in Dbg Properties and Dbg Methods refer to internal implementation type
names in Basic. The sbx prefix can be ignored. The remaining names correspond with the normal
Basic type notation. The SbxEMPTY is the same type as Variant. Additional information about
Basic types is available in the next chapter.

Basic uses the com.sun.star.lang.XTypeProvider interface to detect which interfaces an object sup -
ports. Therefore, it is important to support this interface when implementing a component that should be
accessible from Basic. For details, see 4 Writing UNO Components.

Mapping of UNO and Basic Types

Basic and UNO use different type systems. While OpenOffice.orgBasic is compatible to Visual
Basic and its type system, UNO types correspond to the IDL specification (see 3.2.1 Professional
UNO - API Concepts - Data Types), therefore it is necessary to map these two type systems. This
chapter describes which Basic types have to be used for the different UNO types.

Mapping of Simple Types

In general, the OpenOffice.orgBasic type system is not rigid. Unlike C++ and Java,
OpenOffice.orgBasic does not require the declaration of variables, unless the Option Explicit
command is used that forces the declaration. To declare variables, the Dim command is used. Also,
a OpenOffice.orgBasic type can be optionally specified through the Dim command. The general
syntax is:

151

Dim VarName [As Type] [, VarName [As Type]l]...

All variables declared without a specific type have the type variant. Variables of type variant
can be assigned values of arbitrary Basic types. Undeclared variables are variant unless type
postfixes are used with their names. Postfixes can be used in Dim commands as well. The following
table contains a complete list of types supported by Basic and their corresponding postfixes:

Type Postfix Range

Boolean True or False

Integer % -32768to 32767

Long & -2147483648t0 2147483647
Single ! Floating point number

negative: -3.402823E38t0 -1.401298E-45
positive: 1.401298E-451t0 3.402823E38

Double # Double precision floating point number
negative: -1.79769313486232E3081t0 -4.94065645841247E-324
positive: 4.94065645841247E-3241t01.79769313486232E308

Currency @ Fixed point number with four decimal places
-922,337,203,685,477.5808t0 922,337,203,685,477.5807

Date ‘ ‘Ol/Ol/lOOto 12/31/9999

Object ‘ Basic Object

String $ Character string

Variant arbitrary Basic type

Consider the following Dim examples.

Dim a, b ' Type of a and b is Variant
Dim c as Variant ' Type of ¢ is Variant
Dim d as Integer ' Type of d is Integer (16 bit!)

' The type only refers to the preceding variable

Dim e, f as Double ' ATTENTION! Type of e is Variant!
' Only the type of f is Double

Dim g as String ' Type of g is String

Dim i as Date ' Type of g is Date

' Usage of Postfixes

Dim 1% ' is the same as

Dim i as Integer

Dim d# ' is the same as
Dim d as Double

Dim s$ ' is the same as
Dim s as String

The correlation below is used to map types from UNO to Basic and vice versa.

UNO Basic

void internal type
boolean Boolean
byte Integer
short Integer
unsigned short internal type
long Long
unsigned long internal type

152 OpenOffice.org 2.0 Developer's Guide « May 2005

UNO Basic

hyper internal type

unsigned hyper internal type

float Single

double Double

char internal type

string String

type com.sun.star.reflection.XIdlClass
any Variant

The simple UNO type type is mapped to the com.sun.star.reflection.XId1Class interface to
retrieve type specific information. For further details, refer to 5.2.3 Advanced UNO - Language Bind-
ings - UNO Reflection API.

When UNO methods or properties are accessed, and the target UNO type is known, Basic auto-

matically chooses the appropriate types:
' The UNO object oExamplel has a property “Count” of type short
a%s = 42
oExamplel.Count = a$% ' a% has the right type (Integer)

pi = 3,141593

oExamplel.Count = pi ' pi will be converted to short, so Count will become 3
s$ = “111”
oExamplel.Count = s$ ' s$ will be converted to short, so Count will become 111

Occasionally, OpenOffice.orgBasic does not know the required target type, especially if a param -
eter of an interface method or a property has the type any. In this situation, OpenOffice.orgBasic
mechanically converts the OpenOffice.orgBasic type into the UNO type shown in the table above,
although a different type may be expected. The only mechanism provided by OpenOffice.orgBasic
is an automatic downcast of numeric values:

Long and Integer values are always converted to the shortest possible integer type:
to byte if -128 <= value <= 127
to short if -32768 <= Value <= 32767

The sSingle/Double values are converted to integers in the same manner if they have no decimal
places.

This mechanism is used, because some internal C++ tools used to implement UNO functionality in
OpenOffice.org provide an automatic upcast but no downcast. Therefore, it can be successful to
pass a byte value to an interface expecting a 1ong value, but not vice versa.

In the following example, oNameCont is an object that supports
com.sun.star.container.XNameContainer and contains elements of type short. Assume
Firstvalue is a valid entry.

a%s = 42
oNameCount.replaceByName (“FirstvValue”, a$%) ' Ok, a% is downcasted to type byte

b% = 123456

oNameCount.replaceByName (“FirstValue”, b%) ' Fails, b% is outside the short range
The method call fails, therefore the implementation should throw the appropriate exception that is
converted to a OpenOffice.orgBasic error by the OpenOffice.orgBasic RTL. It may happen that an
implementation also accepts unsuitable types and does not throw an exception. Ensure that the
values used are suitable for their UNO target by using numeric values that do not exceed the target
range or converting them to the correct Basic type before applying them to UNO.

153

154

Always use the type Variant to declare variables for UNO Basic objects, not the type Object. The
OpenOffice.orgBasic type Object is tailored for pure OpenOffice.orgBasic objects and not for UNO
OpenOffice.orgBasic objects. The variant variables are best for UNO Basic objects to avoid prob-
lems that can result from the OpenOffice.orgBasic specific behavior of the type Object:

Dim oServicel ' Ok
oServicel = CreateUnoService("com.sun.star.anywhere.Something")
Dim oService2 as Object ' NOT recommended

oService2 = CreateUnoService("com.sun.star.anywhere.SomethingElse")

Mapping of Sequences and Arrays

Many UNO interfaces use sequences, as well as simple types. The OpenOffice.orgBasic counterpart
for sequences are arrays. Arrays are standard elements of the Basic language. The example below
shows how they are declared:

Dim al(100) ' Variant array, index range: 0-100 -> 101 elements

Dim a2%(5) ' Integer array, index range: 0-5 -> 6 elements

Dim a3$(0) ' String array, index range: 0-0 -> 1 element

Dim a4&(9, 19) ' Long array, index range: (0-9) x (0-19) -> 200 elements

Basic does not have a special index operator like [] in C++ and Java. Array elements are accessed
using normal parentheses ():

Dim i%, a%(10)

for i% = 0 to 10 ' this loop initializes the array
a%(i%) = i%

next i%

dim s$

for i% = 0 to 10 ' this loop adds all array elements to a string
s$ =s$ + " " + a%(i%)

next i%

msgbox s$ Displays the string containing all array elements

Dim b(2, 3)

b(2, 3) =23

b(0, 0) =0

b(2, 4) = 24 ' Error ”Subscript out of range”

As the examples show, the indices in Dim commands differ from C++ and Java array declarations.
They do not describe the number of elements, but the largest allowed index. There is one more
array element than the given index. This is important for the mapping of OpenOffice.orgBasic ar-
rays to UNO sequences, because UNO sequences follow the C++/Java array semantic.

When the UNO API requires a sequence, the Basic programmer uses an appropriate array. In the
following example, oSequenceContainer is an object that has a property TheSequence of type
sequence<short>. To assign a sequence of length 10 with the values 0, 1, 2, ... 9 to this property,
the following code can be used:

Dim i%, a%(9) ' Maximum index 9 -> 10 elements

for i$ = 0 to 9 ' this loop initializes the array
a%(i%) = i%

next 1%

oSequenceContainer.TheSequence = a% ()

' If “TheSequence” is based on XPropertySet alternatively

oSequenceContainer.setPropertyValue (“TheSequence”, a%())
The Basic programmer must be aware of the different index semantics during programming. In the
following example, the programmer passed a sequence with one element, but actually passed two
elements:

' Pass a sequence of length 1 to the TheSequence property:
Dim a%(1) ' WRONG: The array has 2 elements, not only 1!
as(0) =3 Only Element 0 is initialized,

' Element 1 remains 0 as initialized by Dim

' Now a sequence with two values (3,0) is passed what

OpenOffice.org 2.0 Developer's Guide « May 2005

' may result in an error or an unexpected behavior!
oSequenceContainer.setPropertyValue (“TheSequence”, a%$())

When using Basic arrays as a whole for parameters or for property access, they should always be followed
by ' ()'in the Basic code, otherwise errors may occur in some situations.

It can be useful to use a OpenOffice.orgBasic RTL function called Array () to create, initialize and
assign it to a variant variable in a single step, especially for small sequences:

Dim a ' should be declared as Variant
a = Array(1, 2, 3)

' is the same as
1

2
3

Dim a(2)
a(0) =
a(1l) =

2) =
Sometimes it is necessary to pass an empty sequence to a UNO interface. In Basic, empty sequences
can be declared by omitting the index from the Dim command:

Dim a% () ' empty array/sequence of type Integer

Dim b$ () ' empty array/sequence of String

Sequences returned by UNO are also represented in Basic as arrays, but these arrays do not have to
be declared as arrays beforehand. Variables used to accept a sequence should be declared as
variant. To access an array returned by UNO, it is necessary to get information about the number
of elements it contains with the Basic RTL functions LBound () and UBound ().

The function LBound () returns the lower index and UBound () returns the upper index. The fol-
lowing code shows a loop going through all elements of a returned sequence:

Dim aResultArray ' should be declared as Variant
aResultArray = oSequenceContainer.TheSequence

dim 1%, iFrom%, iTo%

iFrom% = LBound(aResultArray())

iTo% = UBound (aResultArray())

for 1% = iFrom% to iTo% ' this loop displays all array elements
msgbox aResultArray (i%)

next i%

The function LBound () is a standard Basic function and is not specific in a UNO context. Basic
arrays do not necessarily start with index 0, because it is possible to write something similar to:

Dim a (3 to 5)
This causes the array to have a lower index of 3. However, sequences returned by UNO always
have the start index 0. Usually only UBound () is used and the example above can be simplified to:

Dim aResultArray ' should be declared as Variant
aResultArray = oSequenceContainer.TheSequence

Dim i%, iTo%

iTo% = UBound (aResultArray())

For i% = 0 To iTo% ' this loop displays all array elements
MsgBox aResultArray (i%)

Next i%

The element count of a sequence/array can be calculated easily:

u% = UBound(aResultArray())
ElementCount$ = u% + 1

For empty arrays/sequences UBound returns -1. This way the semantic of UBound stays consistent
as the element count is then calculated correctly as:

ElementCount% = u% + 1 '=-1+1=0

155

156

The mapping between UNO sequences and Basic arrays depends on the fact that both use a zero-based
index system. To avoid problems, the syntax

Dim a (IndexMin to IndexMin)

or the Basic command Option Base 1 should not be used. Both cause all Basic arrays to start with an
index other than 0.

UNO also supports sequences of sequences. In Basic, this corresponds with arrays of arrays. Do not
mix up sequences of sequences with multidimensional arrays. In multidimensional arrays, all sub
arrays always have the same number of elements, whereas in sequences of sequences every ele-
ment sequence can have a different size. Example:

Dim aArrayOfArrays ' should be declared as Variant
aArrayOfArrays = oExample.ShortSequences ' returns a sequence of sequences of short

Dim i%, NumberOfSequences$
Dim j%, NumberOfElements$
Dim aElementArray

NumberOfSequences% = UBound(aArrayOfArrays()) + 1
For i% = 0 to NumberOfSequences% - 1 ' loop over all sequences
aElementArray = aArrayOfArrays(i%)
NumberOfElements% = UBound(aElementArray()) + 1
For j% = 0 to NumberOfElements% - 1 ' loop over all elements
MsgBox aElementArray(j%)
Next j%
Next 1%

To create an array of arrays in Basic, sub arrays are used as elements of a master array:

' Declare master array
Dim aArrayOfArrays(2)

' Declare sub arrays
Dim aArrayO ()
Dim aArrayl ()
Dim aArray?2 ()

o N W

' Initialise sub arrays

aArray0(0) = 0
aArray0(1) =1
aArray0(2) = 2
aArray0(3) = 3
aArrayl(0) = 42
aArrayl(1) =0
aArrayl(2) = -42
aArray2(0) =1

' Assign sub arrays to the master array
aArrayOfArrays(0) = aArrayO ()
aArrayOfArrays(1) = aArrayl ()
aArrayOfArrays(2) = aArray2(

' Assign the master array to the array property
oExample.ShortSequences = aArrayOfArrays (

In this situation, the runtime function Array () is useful. The example code can then be written
much shorter:

' Declare master array
Dim aArrayOfArrays(2)

' Create and assign sub arrays
aArrayOfArrays(0) Array(0, 1, 2, 3)
aArrayOfArrays(1) Array(42, 0, -42
aArrayOfArrays(2) Array(1

' Assign the master array to the array property
oExample.ShortSequences = aArrayOfArrays ()

If you nest Array (), more compact code can be written, but it becomes difficult to understand the
resulting arrays:

' Declare master array variable as variant
Dim aArrayOfArrays

' Create and assign master array and sub arrays
aArrayOfArrays = Array(Array(0, 1, 2, 3), Array(42, 0, -42), Array(1))

OpenOffice.org 2.0 Developer's Guide « May 2005

' Assign the master array to the array property
oExample.ShortSequences = aArrayOfArrays ()

Sequences of higher order can be handled accordingly.

Mapping of Structs
UNO struct types can be instantiated with the Dim As New command as a single instance and
array.

' Instantiate a Property struct
Dim aProperty As New com.sun.star.beans.Property

' Instantiate an array of Locale structs
Dim Locales(10) As New com.sun.star.lang.Locale

For instantiated polymorphic struct types, there is a special syntax of the Dim As New command,
giving the type as a string literal instead of as a name:

Dim o As New "com.sun.star.beans.Optional<long>"
The string literal representing a UNO name is built according to the following rules:

The strings representing the relevant simple UNO types are "boolean", "byte", "short",
"long", "hyper", "float", "double", "char", "string", "type", and "any", respectively.

The string representing a UNO sequence type is " []1" followed by the string representing the
component type.

The string representing a UNO enum, plain struct, or interface type is the name of that type.

The string representing an instantiated polymorphic struct type is the name of the polymorphic
struct type template, followed by "<", followed by the representations of the type arguments
(separated from one another by ", "), followed by ">".

No spurious spaces or other characters may be introduced into these string representations.

UNO struct instances are handled like UNO objects. Struct members are accessed using the . oper-
ator. The Dbg Properties property is supported. The properties Dbg SupportedInterfaces and
Dbg Methods are not supported because they do not apply to structs.:

' Instantiate a Locale struct
Dim alLocale As New com.sun.star.lang.Locale

' Display properties
MsgBox aLocale.Dbg_ Properties

' Access “Language” property
alocale.Language = "en"

Objects and structs are different. Objects are handled as references and structs as values. When
structs are assigned to variables, the structs are copied. This is important when modifying an object
property that is a struct, because a struct property has to be reassigned to the object after reading
and modifying it.

In the following example, oExample is an object that has the properties MyObject and MyStruct.
The object provided by MyObject supports a string property ObjectName.
The struct provided by MyStruct supports a string property StructName.

Both oExample.MyObject.ObjectName and oExample.MyStruct.StructName should be modi-

fied. The following code shows how this is done for an object:
' Accessing the object
Dim oObject

oObject = oExample.MyObject
oObject.ObjectName = “Tim” ' Ok!

157

158

or shorter

oExample.MyObject.ObjectName = “Tim” ' Ok!

The following code shows how it is done correctly for the struct (and possible mistakes):

' Accessing the struct

Dim aStruct

aStruct oExample.MyStruct ' aStruct is a copy of oExample.MyStruct!
aStruct.StructName = “Tim” ' Affects only the property of the copy!

' If the code ended here, oExample.MyStruct wouldn't be modified!

oExample.MyStruct = aStruct ' Copy back the complete struct! Now it's ok!

' Here the other variant does NOT work at all, because
' only a temporary copy of the struct is modified!
oExample.MyStruct.StructName = “Tim” ' WRONG! oExample.MyStruct is not modified!

Mapping of Enums and Constant Groups

Use the fully qualified names to address the values of an enum type by their names. The following
examples assume that oExample and oExample2 support com.sun.star.beans.XPropertySet
with a property Status of the enum type com.sun.star.beans.PropertyState:

Dim EnumValue
EnumValue = com.sun.star.beans.PropertyState.DEFAULT_ VALUE
MsgBox EnumValue ' displays 1

eExample.Status = com.sun.star.beans.PropertyState.DEFAULT VALUE

Basic does not support Enum types. In Basic, enum values coming from UNO are converted to

Long values. As long as Basic knows if a property or an interface method parameter expects an

enum type, then the Long value is internally converted to the right enum type. Problems appear
with Basic when interface access methods expect an Any:

Dim EnumValue
EnumValue = oExample.Status ' EnumValue is of type Long

' Accessing the property implicitly
oExample2.Status = EnumValue ' Ok! EnumValue is converted to the right enum type

' Accessing the property explicitly using XPropertySet methods

oExample?2.setPropertyValue (“Status”, EnumValue) ' WRONG! Will probably fail!
The explicit access could fail, because Enumvalue is passed as parameter of type Any to setProp-
ertyValue (), therefore Basic does not know that a value of type PropertyState is expected. There
is still a problem, because the Basic type for com.sun.star.beans.PropertyState is Long. This
problem is solved in the implementation of the com.sun.star.beans.XPropertySet interface. For
enum types, the implicit property access using the Basic property syntax Object.Property is pre-
ferred to calling generic methods using the type Any. In situations where only a generic interface
method that expects an enum for an Any, there is no solution for Basic.

Constant groups are used to specify a set of constant values in IDL. In Basic, these constants can be
accessed using their fully qualified names. The following code displays some constants from
com.sun.star.beans.PropertyConcept:

MsgBox com.sun.star.beans.PropertyConcept.DANGEROUS ' Displays 1
MsgBox com.sun.star.beans.PropertyConcept.PROPERTYSET ' Displays 2

A constant group or enum can be assigned to an object. This method is used to shorten code if
more than one enum or constant value has to be accessed:

Dim oPropConcept

oPropConcept = com.sun.star.beans.PropertyConcept
msgbox oPropConcept.DANGEROUS ' Displays 1
msgbox oPropConcept.PROPERTYSET ' Displays 2

OpenOffice.org 2.0 Developer's Guide « May 2005

Case Sensitivity

Generally Basic is case insensitive. However, this does not always apply to the communication
between UNO and Basic. To avoid problems with case sensitivity write the UNO related code as if
Basic was case sensitive. This facilitates the translation of a Basic program to another language, and
Basic code becomes easier to read and understand. The following discusses problems that might
occur.

Identifiers that differ in case are considered to be identical when they are used with UNO object
properties, methods and struct members.

Dim ALocale As New com.sun.star.lang.Locale

alocale.language = "en" ' Ok

MsgBox aLocale.Language ' Ok
The exceptions to this is if a Basic property is obtained through
com.sun.star.container.XNameAccess as described above, its name has to be written exactly as
it is in the API reference. Basic uses the name as a string parameter that is not interpreted when
accessing com.sun.star.container.XNameAccess using its methods.

'oNameAccessible is an object that supports XNameAccess

' including the names “Valuel”, “Value2”
x = oNameAccessible.Valuel ' Ok
y = oNameAccessible.ValLUe2 ' Runtime Error, Value2 is not written correctly

' is the same as

oNameAccessible.getByName (“Valuel”) ' Ok
oNameAccessible.getByName (“VaLUe2”) ' Runtime Error, Value2 is not written correctly

Exception Handling

Unlike UNO, Basic does not support exceptions. All exceptions thrown by UNO are caught by the
Basic runtime system and transformed to a Basic error. Executing the following code results in a
Basic error that interrupts the code execution and displays an error message:

Sub Main

Dim oLib

oLib = BasicLibraries.getByName ("InvalidLibraryName")
End Sub

The BasicLibraries object used in the example contains all the available Basic libraries in a run-
ning office instance. The Basic libraries contained in BasicLibraries is accessed using
com.sun.star.container.XNameAccess. An exception was provoked by trying to obtain a non-
existing library. The BasicLibraries object is explained in more detail in 71.4 OpenOffice.org Basic
and Dialogs - Advanced Library Organization.

The call to getByName () results in this error box:

OpenOffice.org 1.1.0 g|

BEASIC runtimne errar.

An exception occurred

Type: com.sun.star.container. MoSuchElement Exception
Message: ,

Hlustration 3.21: Unhandled UNO Exception

However, the Basic runtime system is not always able to recognize the Exception type. Sometimes
only the exception message can be displayed that has to be provided by the object implementation.

159

Exceptions transformed to Basic errors can be handled just like any Basic error using the On Error
GoTo command:

Sub Main
On Error Goto ErrorHandler ' Enables error handling

Dim oLib

oLib = BasicLibraries.getByName("InvalidLibraryName")
MsgBox "After the Error"

Exit Sub

' Label
ErrorHandler:

MsgBox "Error code: " + Err + Chr$(13) + Error$

Resume Next ' Continues execution at the command following the error command
End Sub

When the exception occurs, the execution continues at the ErrorHandler label. In the error han-
dler, some properties are used to get information about the error. The Err is the error code that is 1

for UNO exceptions. The Error$ contains the text of the error message. Executing the program
results in the following output:

soffice g|

Errar code: 1

A exception occurred

Type: com.sun.star.container. Mo SuchElement Exception
hdeszage;

Hlustration 3.22: Handled UNO Exception

Another message box “After the Error” is displayed after the above dialog box, because Resume
Next goes to the code line below the line where the exception was thrown. The Exit Sub com-
mand is required so that the error handler code would be executed again.

Listeners

Many interfaces in UNO are used to register listener objects implementing special listener inter-
faces, so that a listener gets feedback when its appropriate listener methods are called.
OpenOffice.org Basic does not support the concept of object implementation, therefore a special
RTL function named CreateUnoListener () has been introduced. It uses a prefix for method
names that can be called back from UNO. The CreateUnoListener () expects a method name
prefix and the type name of the desired listener interface. It returns an object that supports this
interface that can be used to register the listener.

The following example instantiates an com.sun.star.container.XContainerListener. Note the
prefix ContListener :

Dim oListener
oListener = CreateUnoListener("ContListener ", "com.sun.star.container.XContainerListener")

The next step is to implement the listener methods. In this example, the listener interface has the
following methods:

Methods of com.sun.star.container.XContainerListener

disposing () Method of the listener base interface com.sun.star.lang.XEventListener,
contained in every listener interface, because all listener interfaces must be
derived from this base interface. Takes a com.sun.star.lang.EventObject

elementInserted() Method of interface com.sun.star.container.XContainerListener.
Takes a com.sun.star.container.ContainerEvent.

160 OpenOffice.org 2.0 Developer's Guide « May 2005

Methods of com.sun.star.container.XContainerListener

elementRemoved () Method of interface com. sun.star.container.XContainerListener.
Takes a com.sun.star.container.ContainerEvent.

elementReplaced () Method of interface com.sun.star.container.XContainerListener.
Takes a com.sun.star.container.ContainerEvent.

In the example, ContListener is specified as a name prefix, therefore the following subs have to
be implemented in Basic.

ContListener disposing
ContListener elementInserted
ContListener elementRemoved

- ContListener elementReplaced

Every listener type has a corresponding Event struct type that contains information about the
event. When a listener method is called, an instance of this Event type is passed as a parameter. In
the Basic listener methods these Event objects can be evaluated by adding an appropriate variant
parameter to the procedure header. The following code shows how the listener methods in the
example could be implemented:

Sub ContListener disposing(oEvent
MsgBox "disposing"
MsgBox oEvent.Dbg Properties
End Sub

Sub ContListener_elementlnserted(oEvent
MsgBox "elementInserted"
MsgBox oEvent.Dbg Properties

End Sub

Sub ContListener elementRemoved(oEvent)
MsgBox "elementRemoved"
MsgBox oEvent.Dbg Properties

End Sub

Sub ContListener elementReplaced(oEvent)
MsgBox "elementReplaced"
MsgBox oEvent.Dbg Properties
End Sub
It is necessary to implement a/l listener methods, including the listener methods of the parent inter-
faces of a listener. Basic runtime errors will occur whenever an event occurs and no corresponding
Basic sub is found, especially with disposing (), because the broadcaster might be destroyed a
long time after the Basic program was ran. In this situation, Basic shows a "Method not found"mes-
sage. There is no indication of which method cannot be found or why Basic is looking for a
method.

We are listening for events at the basic library container. Our simple implementation for events
triggered by user actions in the Tools - Macro - Organizer dialog displays a message box with the
corresponding listener method name and a message box with the Dbg Properties of the event
struct. For the disposing () method, the type of the event object is
com.sun.star.lang.EventObject. All other methods belong to
com.sun.star.container.XContainerListener, therefore the type of the event object is
com.sun.star.container.ContainerEvent. This type is derived from
com.sun.star.lang.EventObject and contains additional container related information.
If the event object is not needed, the parameter could be left out of the implementation. For
example, the disposing () method could be:

' Minimal implementation of Sub disposing

Sub ContListener disposing
End Sub

The event objects passed to the listener methods can be accessed like other struct objects. The fol-
lowing code shows an enhanced implementation of the elementRemoved () method that evaluates

161

162

the com.sun.star.container.ContainerEvent to display the name of the module removed from
Libraryl and the module source code:

sub ContListener_ElementRemoved(oEvent)

MsgBox "Element " + oEvent.Accessor + " removed"
MsgBox "Source =" + Chr$(13) + Chr$(13) + oEvent.Element
End Sub

When the user removes Modulel, the following message boxes are displayed by
ContListener ElementRemoved():

soffice @]
soffice SRl

RERA #2 BAS|C a0

Elerment Modulel remowved

Sub Main

Ernd Sub

Hllustration 3.23: ContListener ElementRemoved Event Callback

When all necessary listener methods are implemented, add the listener to the broadcaster object by
calling the appropriate add method. To register an XContainerListener, the corresponding regis-
tration method at our container is addContainerListener ():

Dim oLib
oLib = BasicLibraries.Libraryl ' Libraryl must exist!
oLib.addContainerListener (oListener) ' Register the listener

The naming scheme XSomeEventListener <> addSomeEventListener () isused throughout the
OpenOffice.org APL

The listener for container events is now registered permanently. When a container event occurs,
the container calls the appropriate method of the
com.sun.star.container.XContainerListener interface in our Basic code.

3.4.4 Automation Bridge

Introduction

The OpenOffice.org software supports Microsoft's Automation technology. This offers program -
mers the possibility to control the office from external programs. There is a range of efficient IDEs
and tools available for developers to choose from.

Automation is language independent. The respective compilers or interpreters must, however,
support Automation. The compilers transform the source code into Automation compatible com-
puting instructions. For example, the string and array types of your language can be used without
caring about their internal representation in Automation, which is BSTR and SAFEARRAY. A client
program that controls OpenOffice.org can be represented by an executable (Visual Basic, C++) or a
script (JScript, VB Script). The latter requires an additional program to run the scripts, such as
Windows Scripting Host (WSH) or Internet Explorer.

UNO was not designed to be compatible with Automation and COM, although there are similari-
ties. OpenOffice.org deploys a bridging mechanism provided by the Automation Bridge to make

OpenOffice.org 2.0 Developer's Guide « May 2005

UNO and Automation work together. The bridge consists of UNO services, however, it is not nec-
essary to have a special knowledge about them to write Automation clients for OpenOffice.org. For
additional information, refer to (see 3.4.4 Professional UNO - UNO Language Bindings - Automation
Bridge - The Bridge Services).

Different languages have different capabilities. There are differences in the manner that the same
task is handled, depending on the language used. Examples in Visual Basic, VB Script and JScript
are provided. They will show when a language requires special handling or has a quality to be
aware of. Although Automation is supposed to work across languages, there are subtleties that
require a particular treatment by the bridge or a style of coding. For example, JScript does not
know out parameters, therefore Array objects have to be used. Currently, the bridge has been
tested with C++, JScript, VBScript and Visual Basic, although other languages can be used as well.

The name Automation Bridge implies the use of the Automation technology. Automation is part of
the collection of technologies commonly referred to as ActiveX or OLE, therefore the term OLE
Bridge is misleading and should be avoided. Sometimes the bridge is called COM bridge, which is
also wrong, since the only interfaces which are processed by the bridge are [Unknown and IDis-
patch.

Requirements

The Automation technology can only be used with OpenOffice.org on a Windows platform (Win-
dows 95, 98, NT4, ME, 2000, XP). There are COM implementations on Macintosh OS and UNIX,
but there has been no effort to support Automation on these platforms.

Using Automation involves creating objects in a COM-like fashion, that is, using functions like
CreateObject () in VB or CoCreateInstance () in C. This requires the OpenOffice.org automa -
tion objects to be registered with the Windows system registry. This registration is carried out
whenever an office is installed on the system. If the registration did not take place, for example
because the binaries were just copied to a certain location, then Automation clients will not work
correctly or not at all. Refer to 3.4.4 Professional UNO - UNO Language Bindings - Automation Bridge -
The Service Manager Component for additional information.

A Quick Tour

The following example shows how to access OpenOffice.org functionality through Automation.
Note the inline comments. The only automation specific call is WScript.CreateObject () in the
first line, the remaining are OpenOffice.org API calls. The helper functions createStruct () and

insertIntoCell () are shown at the end of the listing
'This is a VBScript example
'The service manager is always the starting point

'If there is no office running then an office is started up
Set objServiceManager= WScript.CreateObject ("com.sun.star.ServiceManager")

'Create the CoreReflection service that is later used to create structs
Set objCoreReflection= objServiceManager.createInstance ("com.sun.star.reflection.CoreReflection")

'Create the Desktop
Set objDesktop= objServiceManager.createlnstance ("com.sun.star.frame.Desktop")

'Open a new empty writer document
Dim args ()
Set objDocument= objDesktop.loadComponentFromURL ("private:factory/swriter", " blank", 0, args)

'Create a text object
Set objText= objDocument.getText

'Create a cursor object
Set objCursor= objText.createTextCursor

'Inserting some Text

163

164

objText.insertString objCursor, "The first line in the newly created text document." & vbLf,

'Inserting a second line
objText.insertString objCursor, "Now we're in the second line", false

'Create instance of a text table with 4 columns and 4 rows
Set objTable= objDocument.createlInstance("com.sun.star.text.TextTable")
objTable.initialize 4, 4

'Insert the table
objText.insertTextContent objCursor, objTable, false

'Get first row
Set objRows= objTable.getRows
Set objRow= objRows.getByIndex(0)

'Set the table background color
objTable.setPropertyValue "BackTransparent", false
objTable.setPropertyValue "BackColor", 13421823

'Set a different background color for the first row
objRow.setPropertyValue "BackTransparent", false
objRow.setPropertyValue "BackColor", 6710932

'Fill the first table row
insertIntoCell "Al",
insertIntoCell "B1", "SecondColumn", objTable
insertIntoCell "C1","ThirdColumn", objTable
insertIntoCell "D1","SUM", objTable

objTable.getCellByName ("
objTable.getCellByName ("
objTable.getCellByName ("
objTable.getCellByName ("

2") .setValue 22.5

2") .setValue 5615.3
2") .setValue -2315.7
2") .setFormula"sum "

objTable.getCellByName ("A3"

(.setValue 21.5
objTable.getCellByName ("

("

(

.setValue 615.3
.setValue -315.7
.setFormula "sum "

objTable.getCellByName
objTable.getCellByName ("

objTable.getCellByName ("A4") .setValue 121.5
objTable.getCellByName ("B4") .setValue -615.3
objTable.getCellByName ("C4") .setValue 415.7
objTable.getCellByName ("D4") .setFormula "sum "

'Change the CharColor and add a Shadow
objCursor.setPropertyValue "CharColor", 255
objCursor.setPropertyValue "CharShadowed", true

'Create a paragraph break
'The second argument is a com::sun::star::text::ControlCharacter::PARAGRAPH BREAK constant
objText.insertControlCharacter objCursor, 0 , false

'Inserting colored Text.
objText.insertString objCursor, " This is a colored Text - blue with shadow" & vbLf, false

'Create a paragraph break (ControlCharacter::PARAGRAPH BREAK) .
objText.insertControlCharacter objCursor, 0, false

'Create a TextFrame.
Set objTextFrame= objDocument.createlInstance ("com.sun.star.text.TextFrame")

'Create a Size struct.

Set objSize= createStruct ("com.sun.star.awt.Size") // helper function, see below
objSize.Width= 15000

objSize.Height= 400

objTextFrame.setSize (objSize)

' TextContentAnchorType.AS CHARACTER = 1
objTextFrame.setPropertyValue "AnchorType", 1

'insert the frame
objText.insertTextContent objCursor, objTextFrame, false

'Get the text object of the frame
Set objFrameText= objTextFrame.getText

'Create a cursor object
Set objFrameTextCursor= objFrameText.createTextCursor

'Inserting some Text

"FirstColumn", objTable // insertIntoCell is a helper function, see below

false

objFrameText.insertString objFrameTextCursor, "The first line in the newly created text frame.",

false
objFrameText.insertString objFrameTextCursor, _
vbLf & "With this second line the height of the frame raises.", false

'Create a paragraph break

OpenOffice.org 2.0 Developer's Guide « May 2005

'The second argument is a com::sun::star::text::ControlCharacter::PARAGRAPH BREAK constant
objFrameText.insertControlCharacter objCursor, 0 , false

'Change the CharColor and add a Shadow
objCursor.setPropertyValue "CharColor", 65536
objCursor.setPropertyValue "CharShadowed", false

'Insert another string
objText.insertString objCursor, " That's all for now !!", false

On Error Resume Next

If Err Then

MsgBox "An error occurred"
End If

Sub insertIntoCell(strCellName, strText, objTable)
Set objCellText= objTable.getCellByName (strCellName)
Set objCellCursor= objCellText.createTextCursor
objCellCursor.setPropertyValue "CharColor",16777215
objCellText.insertString objCellCursor, strText, false
End Sub

Function createStruct(strTypeName)

Set classSize= objCoreReflection.forName (strTypeName)

Dim aStruct

classSize.createObject aStruct

Set createStruct= aStruct
End Function
This script created a new document and started the office, if necessary. The script also wrote text,
created and populated a table, used different background and pen colors. Only one object is cre-
ated as an ActiveX component called com.sun.star.ServiceManager. The service manager is
then used to create additional objects which in turn provided other objects. All those objects pro-
vide functionality that can be used by invoking the appropriate functions and properties. A devel-
oper must learn which objects provide the desired functionality and how to obtain them. The

chapter 2 First Steps introduces the main OpenOffice.org objects available to the programmer.

The Service Manager Component

Instantiation

The service manager is the starting point for all Automation clients. The service manager requires
to be created before obtaining any UNO object. Since the service manager is a COM component, it
has a cLs1D and a programmatic identifier which is com.sun.star.ServiceManager. It is instanti-
ated like any ActiveX component, depending on the language used:

//C++

IDispatch* pdispFactory= NULL;

CLSID clsFactory= {0x82154420,0x0FBF,0x11d4, {0x83, 0x13,0x00,0x50,0x04,0x52,0x6A,0xB4}};

hr= CoCreateInstance(clsFactory, NULL, CLSCTX_ ALL, _ uuidof (IDispatch), (void**)s&pdispFactory);

In Visual C++, use classes which facilitate the usage of COM pointers. If you use the Active Tem-
plate Library (ATL), then the following example looks like this:

CComPtr<IDispatch> spDisp;
if (SUCCEEDED(spDisp.CoCreateInstance ("com.sun.star.ServiceManager")))
{

// do something

}

JScript:

var objServiceManager= new ActiveXObject ("com.sun.star.ServiceManager") ;

Visual Basic:

Dim objManager As Object
Set objManager= CreateObject ("com.sun.star.ServiceManager")

VBScript with WSH:

Set objServiceManager= WScript.CreateObject ("com.sun.star.ServiceManager")

165

166

JScript with WSH:

var objServiceManager= WScript.CreateObject ("com.sun.star.ServiceManager") ;

The service manager can also be created remotely, that is. on a different machine, taking the secu-
rity aspects into account. For example, set up launch and access rights for the service manager in
the system registry (see “DCOM”).

The code for the service manager resides in the office executable soffice.exe. COM starts up the
executible whenever a client tries to obtain the class factory for the service manager, so that the
client can use it.

Registry Entries

For the instantiation to succeed, the service manager must be properly registered with the system
registry. The keys and values shown in the tables below are all written during setup. It is not nec-
essary to edit them to use the Automation capability of the office. Automation works immediately
after installation. There are three different keys under HKEY CLASSES ROOT that have the fol-
lowing values and subkeys:

Key Value
CLSID\{82154420-0FBF-11d4-8313-005004526AB4} |"StarOffice Service Manager (Ver 1.0)"
Sub Keys

LocalServer32 "<OfficePath>\program\soffice.exe”
NotInsertable

ProgIDcom.sun.star.ServiceManager.1l "com.sun.star.ServiceManager.l"
Programmable

VersionIndependentProgID "com.sun.star.ServiceManager"

Key Value

com.sun.star.ServiceManager "StarOffice Service Manager"

Sub Keys

CLSID "{82154420-0FBF-11d4-8313-005004526AB4}"
CurVer "com.sun.star.ServiceManager.l"

Key Value

com.sun.star.ServiceManager.1l "StarOffice Service Manager (Ver 1.0)"
Sub Keys

CLSID "{82154420-0FBF-11d4-8313-005004526AB4}"

The value of the key CLSID\{82154420-0FBF-11d4-8313-005004526AB4}\LocalServer32
reflects the path of the office executable.

All keys have duplicates under HKEY LOCAL MACHINE\SOFTWARE\Classes\.

The service manager is an ActiveX component, but does not support self-registration. That is, the
office does not support the command line arguments -RegServer or -UnregServer.

The service manager, as well as all the objects that it creates and that originate from it indirectly as
return values of function calls are proper automation objects. They can also be accessed remotely
through DCOM.

OpenOffice.org 2.0 Developer's Guide « May 2005

From UNO Objects to Automation Objects

The service manager is based on the UNO service manager and similar to all other UNO compo-
nents, is not compatible with Automation. The service manager can be accessed through the COM
API, because the service manager is an Active X component contained in an executable that is the
OpenOffice.org. When a client creates the service manager, for example by calling

CreateObject (), and the office is not running, it is started up by the COM system. The office then
creates a class factory for the service manager and registers it with COM. At that point, COM uses
the factory to instantiate the service manager and return it to the client.

When the function IClassFactory: :CreatelInstance is called, the UNO service manager is con-
verted into an Automation object. The actual conversion is carried out by the UNO service
com.sun.star.bridge.oleautomation.BridgeSupplier (see 3.4.4 Professional UNO - UNO
Language Bindings - Automation Bridge - The Bridge Services). The resulting Automation object con-
tains the UNO object and translates calls to IDispatch: : Invoke into calls to the respective UNO
interface function. The supplied function arguments, as well as the return values of the UNO func-
tion are converted according to the defined mappings (see 3.4.4 Professional UNO - UNO Language
Bindings - Automation Bridge - Type Mappings). Returned objects are converted into Automation
objects, so that all objects obtained are always proper Automation objects.

Using UNO from Automation

With the IDL descriptions and documentation, start writing code that uses an interface. This
requires knowledge about the programming language, especially how UNO interfaces can be
accessed in that language and how function calls work.

In some languages, such as C++, the use of interfaces and their functions is simple, because the IDL
descriptions map well with the respective C++ counterparts. For example, the syntax of functions
are similar, and interfaces and out parameters can also be realized. The C++ language is not the
best choice for Automation, because all interface calls have to use IDispatch, which is difficult to
use in C++. In other languages, such as VB and JScript, the IDispatch interface is hidden behind
an object syntax that leads to shorter and more understandable code.

Different interfaces can have functions with the same name. There is no way to call a function
which belongs to a particular interface, because interfaces can not be requested in Automation . Ifa
UNO object provides two functions with the same name, it is undefined which function will be
called. A solution for this issue is planned for the future.

Not all languages treat method parameters in the same manner, especially when it comes to input
parameters that are reused as output parameters. From the perspective of a VB programmer an out
parameter does not look different from an in parameter. However, to realize out parameters in
Jscript, use an Array or Value Object that is a special construct provided by the Automation
bridge. JScript does not support out parameters through calls by reference.

Calling Functions and Accessing Properties

The essence of Automation objects is the IDispatch interface. All function calls, including the
access to properties, ultimately require a call to IDispatch: : Invoke. When using C++, the use of

IDispatch is rather cumbersome. For example, the following code calls
createInstance ("com.sun.star.reflection.CoreReflection") :

OLECHAR* funcname = L”createlnstance”;

DISPID id;

IDispatch* pdispFactory= NULL;

CLSID clsFactory= {0x82154420,0x0FBF,0x11d4, {0x83, 0x13,0x00,0x50,0x04,0x52,0x6A,0xB4}};

HRESULT hr= CoCreatelnstance(clsFactory, NULL, CLSCTX_ ALL, _ uuidof (IDispatch), (void**)é&pdispFactory);

167

168

if (SUCCEEDED (pdispFactory->GetIDsOfNames (IID NULL, &funcName, 1, LOCALE USER DEFAULT, &id)))
{
VARIANT paraml;
VariantInit (¶ml) ;
paraml.vt= VT_BSTR;
paraml.bstrVal= SysAllocString(L"com.sun.star.reflection.CoreReflection") ;
DISPPARAMS dispparams= { ¶ml, 0, 1, 0};
VARIANT result;
VariantInit(&result);
hr= pdispFactory->Invoke(id, IID NULL, LOCALE USER_DEFAULT, DISPATCH_ METHOD,
&dispparams, &result, NULL, 0);
}

First the COM ID for the method name createInstance () is retrieved from GetIdsOfNames, then
the ID is used to invoke () the method createInstance() .

Before calling a certain function on the IDispatch interface, get the DISPID by calling GetIDsOf-
Names. The DISPIDs are generated by the bridge, as required. There is no fixed mapping from
member names to DISPIDs, that is, the DISPID for the same function of a second instance of an
object might be different. Once a DISPID is created for a function or property name, it remains the
same during the lifetime of this object.

Helper classes can make it easier. The next example shows the same call realized with helper
classes from the Active Template Library:

CComDispatchDriver spDisp(pdispFactory);

CComVariant param(L“com.sun.star.reflection.CoreReflection") ;
CComVariant result;
hr= spUnk.Invokel (L“createInstance"“,param, result);

Some frameworks allow the inclusion of COM type libraries that is an easier interface to Automa -
tion objects during development. These helpers cannot be used with UNO, because the SDK does
not provide COM type libraries for UNO components. While COM offers various methods to in-

voke functions on COM objects, UNO supports IDispatch only.

Programming of Automation objects is simpler with VB or JScript, because the 1Dispatch interface
is hidden and functions can be called directly. Also, there is no need to wrap the arguments into
VARIANTS.

//VB
Dim objRefl As Object
Set objRefl= dispFactory.createInstance (“com.sun.star.reflection.CoreReflection”)

//JScript
var objRefl= dispFactory.createInstance (“com.sun.star.reflection.CoreReflection”);

Pairs of get/set functions following the pattern

SomeType getSomeProperty ()
void setSomeProperty (SomeType aValue)

are handled as COM object properties.

Accessing such a property in C++ is similar to calling a method. First, obtain a DISPID, then call
IDispatch: :Invoke with the proper arguments.

DISPID dwDispID;
VARIANT value;
VariantInit (&value) ;
OLECHAR* name= L“AttrByte";
HRESULT hr = pDisp->GetIDsOfNames (IID NULL, &name, 1, LOCALE USER DEFAULT, &dwDispID) ;
if (SUCCEEDED (hr))
{
// Get the property
DISPPARAMS dispparamsNoArgs = {NULL, NULL, 0, O};
pDisp->Invoke (dwDispID, IID NULL,LOCALE USER DEFAULT, DISPATCH PROPERTYGET,
&dispparamsNoArgs, &value, NULL, NULL);
// The VARIANT value contains the value of the property

// Sset the property
VARIANT value2;
VariantInit (value2);
value2.vt= VT _UIl;
value2.bval= 10;

OpenOffice.org 2.0 Developer's Guide « May 2005

DISPPARAMS disparams;

dispparams.rgvarg = &value2;

DISPID dispidPut = DISPID_PROPERTYPUT;
dispparams.rgdispidNamedArgs = &dispidPut;

pDisp->Invoke (dwDispID, IID NULL, LOCALE_USER DEFAULT, DISPATCH_ PROPERTYPUT,
&dispparams, NULL, NULL, NULL);

When the property is an IUnknown*IDispatch® or SAFEARRAY*, the flag DISPATCH PROPERTYPU-
TREF must be used. This is also the case when a value is passed by reference (VARIANT.vt =
VT BYREF | ...).

The following example shows using the ATL helper it looks simple:

CComVariant prop;

CComDispatchDriver spDisp(pDisp) ;

// get the property

spDisp.GetPropertyByName (L“"AttrByte“, &prop) ;
//set the property

CComVariant newVal((BYTE) 10);
spDisp.PutPropertyByName (L“AttrByte“, &newval) ;

The following example using VB and JScript it is simpler:

//VB
Dim prop As Byte
prop= obj.AttrByte

Dim newProp As Byte
newProp= 10
obj.AttrByte= newProp
'or

obj.AttrByte= 10

//JScript

var prop= obj.AttrByte;
obj.AttrByte= 10;

Service properties are not mapped to COM object properties. Use interfaces, such as
com.sun.star.beans.XPropertySet to work with service properties.

Return Values

There are three possible ways to return values in UNO:
. function return values

.- inout parameters

. out parameters

Return values are commonplace in most languages, whereas inout and out parameters are not
necessarily supported. For example, in JScript.

To receive a return value in C++ provide a VARIANT argument to IDispatch::Invoke:

//UNO IDL
long func();

//

DISPPARAMS dispparams= { NULL, 0, 0, 0};

VARIANT result;

VariantInit(&result);

hr= pdisp->Invoke(dispid, IID_NULL, LOCALE_USER_DEFAULT, DISPATCH_METHOD,
&dispparams, &result, NULL, 0);

The following example shows using VB and JScript this is simple:
//VB
Dim result As Long

result= obj.func

//JScript
var result= obj.func

169

When a function has inout parameters then provide arguments by reference in C++:

//UNO IDL
void func([inout] long val);

//C++

long longOut= 10;

VARIANT var;

VariantInit (&var);
var.vt= VT_BYREF | VT_I4;
var.plVal= &longOut;

DISPPARAMS dispparams= { &var, 0, 1, 0};
hr= pdisp->Invoke(dispid, IID NULL, LOCALE USER DEFAULT, DISPATCH METHOD,
&dispparams, NULL, NULL, O0);

//The value of longOut will be modified by UNO function.

The above VB code is written like this, because VB uses call by reference by default. After the call
to func (), value contains the function output:

Dim value As Long
value= 10
obj.func value

The type of argument corresponds to the UNO type according to the default mapping, cf. 3.4.4
Professional UNO - UNO Language Bindings - Automation Bridge - Type Mappings. If in doubt, use
VARIANTS.

Dim value As Variant
value= 10;
obj.func value

However, there is one exception. If a function takes a character (char) as an argument and is called
from VB, use an Integer, because there is no character type in VB. For convenience, the COM
bridge also accepts a String as inout and out parameter:

//VB

Dim value As String

// string must contain only one character
value= "A"

Dim ret As String

obj.func value

JScript does not have inout or out parameters. As a workaround, the bridge accepts JScript Array
objects. Index 0 contains the value.

// Jscript

var inout= new Array();
inout[0]=123;

obj.func(inout);

var value= inout[0];

Out parameters are similar to inout parameters in that the argument does not need to be initial-
ized.

//Ct++

long longOut;

VARIANT var;

VariantInit (&var) ;
var.vt= VT_BYREF | VT _14;
var.plval= &longOut;

DISPPARAMS dispparams= { &var, 0, 1, 0};
hr= pdisp->Invoke(dispid, IID_NULL, LOCALE USER_DEFAULT, DISPATCH_METHOD,
&dispparams, NULL, NULL, O0);

//VB
Dim value As Long
obj.func value

//JScript

var out= new Array();
obj. func (out) ;

var value= out[0];

170 OpenOffice.org 2.0 Developer's Guide « May 2005

Usage of Types

Interfaces

Many UNO interface functions take interfaces as arguments. If this is the case, there are three pos-
sibilities to get an instance that supports the needed interface:

Ask the service manager to create a service that implements that interface.
Call a function on a UNO object that returns that particular interface.

Provide an interface implementation if a listener object is required. Refer to 3.4.4 Professional
UNO - UNO Language Bindings - Automation Bridge - Automation Objects with UNO Interfaces for
additional information.

If createInstance () is called on the service manager or another UNO function that returns an
interface, the returned object is wrapped, so that it appears to be a COM dispatch object. When it is
passed into a call to a UNO function then the original UNO object is extracted from the wrapper
and the bridge makes sure that the proper interface is passed to the function. If UNO objects are
used, UNO interfaces do not have to be dealt with. Ensure that the object obtained from a call to a
UNO object implements the proper interface before it is passed back into another UNO call.

Structs

Automation does not know about structs as they exist in other languages, for example, in C++.
Instead, it uses Automation objects that contain a set of properties similar to the fields of a C++
struct. Setting or reading a member ultimately requires a call to IDispatch: : Invoke. However in
languages, such as VB, VBScript, and JScript, the interface call is obscured by the programming
language. Accessing the properties is as easy as with C++ structs.

// VB. obj is an object that implements a UNO struct

obj.Width= 100

obj.Height= 100

Whenever a UNO function requires a struct as an argument, the struct must be obtained from the
UNO environment. It is not possible to declare a struct. For example, assume there is an office
function setSize () that takes a struct of type Size. The struct is declared as follows:

// UNO IDL
struct Size
{
long Width;
long Height;
}

// the interface function, that will be called from script
void XShape::setSize(Size aSize)

You cannot write code similar to the following example (VBScript):

Class Size
Dim Width
Dim Height
End Class

'obtain object that implements Xshape

'now set the size
call objXShape.setSize(new Size) // wrong

The com.sun.star.reflection.CoreReflection service or the Bridge GetStruct function that
is called on the service manager object can be used to create the struct. The following example uses
the CoreReflection service

'VBScript in Windows Scripting Host
Set objServiceManager= Wscript.CreateObject ("com.sun.star.ServiceManager")

'Create the CoreReflection service that is later used to create structs
Set objCoreReflection= objServiceManager.createInstance ("com.sun.star.reflection.CoreReflection")

171

'get a type description class for Size

Set classSize= objCoreReflection.forName ("com.sun.star.awt.Size")
'create the actual object

Dim aSize

classSize.createObject aSize

'use aSize

aSize.Width= 100

aSize.Height= 12

'pass the struct into the function
objXShape.setSize aSize

The next example shows how Bridge GetStruct is used.

Set objServiceManager= Wscript.CreateObject ("com.sun.star.ServiceManager")
Set aSize= objServiceManager.Bridge_ GetStruct ("com.sun.star.awt.Size")
'use aSize

aSize.Width= 100

aSize.Height= 12

objXShape.setSize aSize

The Bridge GetStruct function is provided by the service manager object that is initially created
by CreateObject (Visual Basic) or CoCreatelnstance[Ex] (VC++).c

The corresponding C++ examples look complicated, but ultimately the same steps are necessary.
The method forName () on the CoreReflection service is called and returns a
com.sun.star.reflection.XId1lClass which can be asked to create an instance using createOb-
ject ():

// create the service manager of OpenOffice

IDispatch* pdispFactory= NULL;

CLSID clsFactory= {0x82154420,0x0FBF,0x11d4, {0x83, 0x13,0x00,0x50,0x04,0x52,0x6A,0xB4}};

hr= CoCreateInstance(clsFactory, NULL, CLSCTX ALL, _ uuidof (IDispatch), (void**)spdispFactory);

// create the CoreReflection service

OLECHAR* funcName= L"createInstance";

DISPID id;

pdispFactory->GetIDsOfNames (IID NULL, &funcName, 1, LOCALE USER DEFAULT, &id);

VARIANT paraml;

VariantInit(¶ml) ;

paraml.vt= VT_BSTR;

paraml.bstrVal= SysAllocString(L"com.sun.star.reflection.CoreReflection");

DISPPARAMS dispparams= { ¶ml, 0, 1, O};

VARIANT result;

VariantInit(&result);

hr= pdispFactory->Invoke(id, IID_NULL, LOCALE USER_DEFAULT, DISPATCH_METHOD,
&dispparams, &result, NULL, 0);

IDispatch* pdispCoreReflection= result.pdispVal;

pdispCoreReflection->AddRef () ;

VariantClear (&result);

// create the struct's idl class object
OLECHAR* strforName= L"forName";
hr= pdispCoreReflection->GetIDsOfNames (IID NULL, &strforName, 1, LOCALE USER_DEFAULT, &id);
VariantClear(¶ml) ;
paraml.vt= VT_BSTR;
paraml.bstrVal= SysAllocString(L"com.sun.star.beans.PropertyValue");
hr= pdispCoreReflection->Invoke(id, IID_NULL, LOCALE USER_DEFAULT,
DISPATCH METHOD, &dispparams, &result, NULL, 0);

IDispatch* pdispClass= result.pdispVal;
pdispClass->AddRef () ;
VariantClear (&result);

// create the struct
OLECHAR* strcreateObject= L"createObject";
hr= pdispClass->GetIDsOfNames (IID NULL, éstrcreateObject, 1, LOCALE USER DEFAULT, &id)

IDispatch* pdispPropertyValue= NULL;

VariantClear (¶ml) ;

paraml.vt= VT DISPATCH | VT BYREF;

paraml.ppdispVal= &pdispPropertyValue;

hr= pdispClass->Invoke(id, IID NULL, LOCALE USER DEFAULT,
DISPATCH METHOD, &dispparams, NULL, NULL, 0);

// do something with the struct pdispPropertyValue contained in dispparams

//
pdispPropertyValue->Release () ;

pdispClass->Release () ;
pdispCoreReflection->Release () ;

172 OpenOffice.org 2.0 Developer's Guide « May 2005

pdispFactory->Release () ;

The Bridge GetStruct example.

// objectServiceManager 1is the service manager of the office
OLECHAR* strstructFunc= L"Bridge GetStruct";
hr= objServiceManager->GetIDsOfNames (IID_NULL, &strstructFunc, 1, LOCALE USER_DEFAULT, &id);

VariantClear (&result);

VariantClear (¶ml);

paraml.vt= VT_BSTR;

paraml.bstrVal= SysAllocString(

L"com.sun.star.beans.PropertyValue") ;

hr= objServiceManager->Invoke(id, IID_NULL,LOCALE USER DEFAULT, DISPATCH METHOD,
&dispparams, &result, NULL, 0);

IDispatch* pdispPropertyValue= result.pdispVal;
pdispPropertyValue->AddRef () ;

// do something with the struct pdispPropertyValue

JScript:

// struct creation via CoreReflection
var objServiceManager= new ActiveXObject ("com.sun.star.ServiceManager") ;
var objCoreReflection= objServiceManager.createlInstance ("com.sun.star.reflection.CoreReflection");

var classSize= objCoreReflection.forName ("com.sun.star.awt.Size");

var outParam= new Array();

classSize.createObject(outParam) ;

var size= outParam[O0];

//use the struct

size.Width=111;

size.Height=112;
Tt b

// struct creation by bridge function

var objServiceManager= new ActiveXObject ("com.sun.star.ServiceManager") ;
var size= objServiceManager.Bridge_GetStruct("com.sun.star.awt.Size");
size.Width=111;

size.Height=112;

Using Automation Objects From UNO

This language binding offers a way of accessing Automation objects from UNO. For an Automa-
tion object to be usable, it must be properly registered on the system and have a programmatic
identifier (Progld) with which an instance can be created. From UNO, all Automation objects are
accessed via com.sun.star.script.XInvocation. XInvocation is a scripting interface that is intended
for dynamically performing calls similar to IDispatch. Since StarBasic uses XInvocation to com-
municate with objects, Automation objects can be used from StarBasic.

Instantiation

To obtain an instance of an Automation object it is easiest to use the service
com.sun.star.bridge.oleautomation.Factory. It provides an XMultiServiceFactory interface which is
used to get the desired object. For example:

//C++

Reference<XInterface> xInt = serviceManager->createlInstance (
OUString: :createFromAscii ("com.sun.star.bridge.oleautomation.Factory")) ;

Reference<XMultiServiceFactory> automationFactory(xInt, UNO_QUERY) ;
if (automationFactory.is())
{

Reference<XInterface> xIntApp = automationFactory->createlnstance (

OUString: :createFromAscii ("Word.Application")) ;

Reference< XInvocation > xInvApp(xIntApp, UNO_QUERY) ;
// call methods on the Automation object.

173

174

In StarBasic it looks quite simple:

'StarBasic
Dim automationFactory As Object
Set automationFactory = createUnoService ("com.sun.star.bridge.oleautomation.Factory")

Dim objApp As Objects
Set objApp = automationFactory.createInstance ("Word.Application")
'call methods on the Automation object

Accessing Automation Objects

All Automation objects are accessed through com.sun.star.script.XInvocation interface. The func-
tion getIntrospection is not implemented. To call a method, invoke is used. invoke is also used to
access properties with additional arguments. The methods setValue and getValue set or retrieve a
property value. These methods can only be used with properties that do not have additional argu-
ments.

hasMethod returns true for a name that represents a method or a property with arguments. And
last, hasProperty returns true for a name that represents a property with no arguments. Refer to
the IDL documentation for more information about XInvocation.

Properties with Avguments

Unlike UNO properties, Automation properties can have arguments. Therefore, setValue and
getValue method are not suitable for those properties. Instead invoke is used. If a property takes
arguments, then hasProperty returns false and hasMethod returns true. invoke must also be used
if the arguments of the property are optional and not provided in the call.

The bridge must recognize a write operation on a property. To achieve this, the caller has to pro-
vide the actual property value (not additional arguments) in a structure of type
com.sun.star.bridge.oleautomation.PropertyPutArgument. Similar to IDispatch: :Invoke,
the property value must be the last in the argument list. For example:

// MIDL

[propget, ...] HRESULT Item([in] VARIANT vall, [out, retval] VARIANT* pVal);
[propput, ...] HRESULT Item([in] VARIANT vall, [in] VARIANT newVal) ;

// Ct++

Sequence< sal Intl6> seqglndices;

Sequence<Any>7serut;

//Prepare arguments

Any arArgs([2];

arArgs[0] <<= makeAny((sal Int32) 0);

arArgs[l] <<= PropertyPutA;gument(makeAny((salilnt32) 0));
Sequence<Any> segArgs (arArgs, 2);

//obj is a XInvocation of an Automation object
obj->invoke (OUString: :createFromAscii ("Item"), segArgs, seqglndices, seqOut);

//now get the property value
Any arGet[1l];
arGet [0] <<= makeAny((sal Int32) 0);

Sequence<Any> seqgGet (arGet, 1);
Any retVal = obj->invoke (OUString::createFromAscii ("Item"), seqgGet, segIndices, seqOut);

In StarBasic, PropertyPutArgument is implicitly used:
'StarBasic
obj.Item(0) = 0

Dim propval As Variant
propval = obj.Item(0

The property value that is obtained in a property get operation is the return value of invoke.

OpenOffice.org 2.0 Developer's Guide « May 2005

Optional Parameters, Default Values, Variable Argument Lists

The bridge supports all these special parameters. Optional parameters can be left out of the argu-
ment list of invoke. However, if a value is omitted, then all following arguments from the param -
eter list must also be omitted. This only applies for positional arguments and not for named argu-
ments.

If the Automation object specifies a default value for an optional parameter, then the bridge sup-
plies it, if no argument was provided by the caller.

If a method takes a variable argument list, then one can provide the respective UNO arguments as
ordinary arguments to invoke. IDispatch: :Invoke would require those arguments in a SAFE-
ARRAY.

Named Arguments

To provide named arguments in an invoke call, one has to use instances of
com.sun.star.bridge.oleautomation.NamedArgument for each argument. This is the struct in
UNOIDL:

module com { module sun { module star { module bridge { module oleautomation {
struct NamedArgument
{
/** The name of the argument, for which
<member>NamedArgument: :Value</member> is intended.
)
string Name;

/** The value of the argument whoose name is the one as contained in the
member <member>Name</member>.
x/
any Value;

SN AN B A A

In a call both, named arguments and positional arguments can be used together. The order is, first
the positional arguments (the ordinary arguments), followed by named arguments. When named
arguments are used, then arguments can be omitted even if arguments are provided that follow
the omitted parameter. For example, assume that a method takes five arguments, which are all
optional, then the argument lists for XInvocation could be as follows:

= all provided: {A,B,C, D, E}

= arguments omitted: {A,B,C,D} or {A,B}but not {A, C, D}
= named arguments : {nA, nC, nB, nD}, {nC, nD}

» mixed arguments: {A, B,nD}, {A, nC}

Named arguments can also be used with properties that have additional arguments. However, the
property value itself cannot be a named argument, since it is already regarded as a named argu-
ment. Therefore, is is always the last argument .

Type Mappings

When a UNO object is called from an Automation environment, such as VB, then depending on the
signature of the called method, values of Automation types are converted to values of UNO types.
Ifvalues are returned, either as out-arguments or return value, then values of UNO types are con-
verted to values of Automation types. The results of these conversions are governed by the values
to be converted and the respective type mapping.

175

176

The type mapping describes how a type from the Automation environment is represented in the
UNO environment and vice versa. Automation types and UNO types are defined in the respective
IDL languages, MIDL and UNO IDL. Therefore, the type mapping will refer to the IDL types.

The IDL types have a certain representation in a particular language. This mapping from IDL types
to language specific types must be known in order to use the Automation bridge properly. Lan-
guages for which a UNO language binding exists will find the mapping in the language binding
documentation. Automation capable languages can provide information about how Automation
types are to be used (for example, Visual Basic, Delphi).

Some Automation languages may not provide a complete mapping for all Automation types. For
example, JScript cannot provide float values. If you use C or C++, then all Automation types can be
used directly.

A method call to an Automation object is performed through 1IDispatch::Invoke. Invoke takes an
argument of type DISPPARAMS, which contains the actual arguments for the method in an array of
VARIANTARG. These VARIANTARGS are to be regarded as holders for the actual types. In most Auto-
mation languages you are not even aware of IDispatch. For example:

//UNO IDL

string func([in] long value);

//VB

Dim value As Long

value= 100

Dim ret As String

ret= obj.func(value)

In this example, the argument is a long and the return value is a string. That is, IDispatch::In-
voke would receive a VARIANTARG that contains a long and returns a VARIANT that contains a

string.

When an Automation object is called from UNO through com.sun.star.script.XInvocation:invoke,
then all arguments are provided as anys. The any, similiar to the VARIANTARG, acts as a holder for
the actual type. To call Automation objects from UNO you will probably use StarBasic. Then the
XlInvocation interface is hidden, as in IDispatch in Visual Basic.

The bridge converts values according to the type mapping specified at 3.4.4 Professional UNO -
UNO Language Bindings - Automation Bridge - Type Mappings - Default Mappings. Moreover, it tries
to coerce a conversion if a value does not have a type that conforms with the default mapping
(3.4.4 Professional UNO - UNO Language Bindings - Automation Bridge - Type Mappings - Conversion
Mappings).

In some situations, it may be necessary for an Automation client to tell the bridge what the argu-
ment is supposed to be. For this purpose you can use the Value Object (3.4.4 Professional UNO -
UNO Language Bindings - Automation Bridge - Type Mappings - Value Objects).

Default Mappings

The following table shows the mapping of UNO and Automation types. It is a bidirectional map -
ping (which is partly true for the UNO sequence, which will be explained later on) and therefore it
can be read from left to right and vice versa. The mapping of Automation types to UNO types
applies when:

A method of a UNO object is called from an Automation environment and values are passed
for in or in/out parameters.

A method of an Automation object is called from the UNO environment and the method
returns a value.

A method of an Automation object is called from the UNO environment and the method
returns values in in/out or out - parameters.

OpenOffice.org 2.0 Developer's Guide « May 2005

The mapping of UNO types to Automation types applies when:

A method of an Automation object is called from an UNO environment and values are passed
for in or in/out- parameters.

A method of a UNO object is called from an Automation environment and the method returns
a value.

A method of a UNO object is called from an Automation environment and the method returns

values in in/out or out-parameters.

Automation IDL Types

UNO IDL Types

boolean boolean
unsigned char byte
double double
float float
short short
unsigned short
long long
unsigned long
BSTR string
short char
long enum
IDispatch com.sun.star.script.XInvocation, UNO interface
struct
sequence<type>
type
IUnknown com.sun.star.uno.XInterface

SAFEARRAY (VARIANT) sequence< fype >

SAFEARRAY (type)

DATE com.sun.star.bridge.oleautomation.Date
CyY com.sun.star.bridge.oleautomation.Currency
Decimal

com.sun.star.bridge.oleautomation.Decimal

SCODE com.sun.star.bridge.oleautomation.SCode
VARIANT all of the above types or any
all of the above types any

The following sections discuss the respective mappings in more detail.

Mapping of Simple Types

Many languages have equivalents for the IDL simple types, such as integer and floating point
types. Some languages, however, may not support all these types. For example, JScript is a typeless
language and only recognizes a general number type. Internally, it uses four byte signed integer
values and double values to represent a number. When a UNO method is called that takes a float
as an argument, and that value is at some point returned to the caller, then the values may differ
slightly. This is because the bridge converts the double to a float, which is eventually converted
back to a double.

177

178

If a UNO method takes an any as argument and the implementation expects a certain type within
the any, then the bridge is not always able to provide the expected value. Assuming, that a UNO
method takes an any that is supposed to contain a short and the method is to be called from
JScript, then the bridge will provide an any containing a four byte integer. This may result in an
exception from the initiator of the call The solution is to use a Value Object (3.4.4 Professional UNO
- UNO Language Bindings - Automation Bridge - Type Mappings - Value Objects).

Unlike Automation, there are unsigned integer types in UNO. To provide a positive value that
exceeds the maximum value of the corresponding signed type, you have to use the corresponding
negative value. For example, to call the following UNO function in VB with the value 32768
(0x8000) you need to pass -32768 .

//UNO IDL

void foo(unsigned short value);

'VB

Dim val As Integer 'two byte signed integer
val = -32768

obj.foo(val)

The rule for calculating the negative equivalent is:
signed _value = unsigned_value - (max_unsigned +1)

In the preceding example, unsigned value is the value that we want to pass, and which is 32768.
This value is one too many for the VB type Integer, that is why we have to provide a negative
value. max_unsigned has the value 65535 for a two byte integer. So the equation is

-32768 = 32768 - (65535 +1)

Alternatively you can use a type with a greater value range. The Automation bridge will then per-
form a narrowing conversion.

Dim val As Long 'four byte signed integer
val = 32768
obj.foo(val) 'expects a two byte unsigned int

For more information about conversions see chapter 3.4.4 Professional UNO - UNO Language Bind-
ings - Automation Bridge - Type Mappings - Conversion Mappings.

Mapping of hyper and Decimal

Automation does not have an 8 byte integer value that compares to a UNO hyper. However, the
Automation type Decimal has a value space big enough to represent a hyper. Therefore, when
calling UNO methods from Automation, use Decimal whenever the UNO method requires a hyper
or unsigned hyper.

The Decimal type may not be supported by all Automation capable language. Examples are JScript
and VBScript, which should not be used when calling these UNO methods. This is because pro-
vided values may be rounded and hence the results are tainted.

Visual Basic has the restriction that Decimal variables can only be declared as Variants. The assign-
ment of a value has to be done using the CDec function. Furthermore, VB does not allow the use of
integer literals bigger than 4 bytes. As a workaround, you can provide a string that contains the
value. For example:

Dim aHyper As Variant
aHyper = CDec(%9223372036854775807")

Visual Basic .NET has the build-in type decimal and does not restrict the integer literals.

When Automation objects are called from UNO, then the
com.sun.star.bridge.oleautomation.Decimal type can be used to provide arguments with the Auto-
mation arguments of type Decimal. Returned Decimal values are converted to
com.sun.star.bridge.oleautomation.Decimal .

OpenOffice.org 2.0 Developer's Guide « May 2005

Mapping of String

A string is a data structure that is common in programming languages. Although the idea of a
string is the same, the implementations and their creation can be quite different. For example, a
C++ programmer has a range of possibilities to choose from (for example, char*, char[1,

wchar t*,wchar t[], std::string, CString, BSTR), whereas a JScript programmer can only use
one kind of string. To use Automation across languages, it is necessary to use a string type that is
common to all those languages, and that has the same binary representation. This particular string
is declared as BSTR in COM. The name can be different, depending on the language. For example,
in C++ there is a BSTR type, in VBt is called string, and in JScript every string defined is a BSTR.
Refer to the documentation covering the BSTR's equivalent if using an Automation capable lan-
guage not covered by this document.

Mapping of Interfaces and Structures

UNO interfaces or structures are represented as dispatch objects in the Automation environment.
That is, the converted value is an object that implements IDispatch. If an UNO interface was
mapped, then you also can access all other UNO interfaces of the object through IDispatch. In other
words, the dispatch object represents the UNO object with all its interfaces and not only the one
interface which was converted.

If a dispatch object, which actually is a UNO object or a structure, is now passed back to UNO,
then the bridge will extract the original UNO interface or structure and pass it on. Since the UNO
dispatch object represents the whole UNO object, that is, all its supported interfaces, you can use
the dispatch object as argument for all those interface types. For example:

//UNO IDL methods
XFoo getFoo();
void doSomething (XBar arg) ;

'VB
Dim objUno As Object
Set objUno = objOtherUnoObject.getFoo ()

'The returned interface belongs to an UNO object which implements XFoo and XBar.
'Therefore we can use objUno in this call:
call objOtherUnoObject.doSomething (objUno)

If Automation objects are called from UNO, then the called methods may return other Automation
objects, either as IUnknown* or IDispatch*. These can then be used as arguments in later calls to
Automation objects or you can perform calls on them. In case of TUnknown, this is only possible if
the object also supports IDispatch. To make calls from UNO, the XInterface must first be queried
for XInvocation. When a method returns IDispatch, then on UNO side a XInvocation is received
and can be called immediately.

When these interfaces are passed back as arguments to a call to an Automation object, then the
bridge passes the original TUnknown or IDispatch pointer. This is dependent upon what the
parameter type is. Remember, calls can only be performed on Automation objects. Therefore T1Un-
known and IDispatch are the only possible COM interfaces. If the expected parameter is a
VARIANT, then it will contain an IUnknown* if the Automation object was passed as IUnknown*
into the UNO environment. It will contain an IDispatch* if the object was passed as IDispatch*.
For example:

//MIDL
HRESULT getUnknown ([out, retval] IUnknown ** arg);
HRESULT getDispatch([out, retval] IDispatch ** arg);

HRESULT setUnknown ([in] IUnknown * arg);
HRESULT setDispatch([in] IDispatch * arg);
HRESULT setVariant ([in] VARIANT arg);

'StarBasic

Dim objUnknown As Object
Dim objDispatch As Object

179

Set objUnknown = objAutomation.getUnknown ()
Set objDispatch = objAutomation.getDispatch ()

objAutomation.setUnknown objUnknown 'Ok
objAutomation.setDispatch objUnknown 'Ok, if objUnknow supports IDispatch,

otherwise a CannotConvertException will be thrown.
objAutomation.setUnknown objDispatch 'OK

objAutomation.setVariant objUnknown 'VARTYPE is VT Unknown
objAutomation.setVariant objDispatch 'VARTYPE is VT DISPATCH

For the purpose of receiving events (listener) it is possible to implement UNO interfaces as dis-
patch objects 3.4.4 Professional UNO - UNO Language Bindings - Automation Bridge - Automation
Objects with UNO Interfaces. That type of object is used as an argument in UNO functions where
particular interface types are required. The bridge will make sure that the proper interface is pro-
vided to the UNO function. If the UNO interface is then passed back into the Automation environ-
ment, the original Automation object will be passed.

If the Automation object is passed as argument for an any, then the any will contain an XlInterface
if the object was passed as IUnknown or the any contains an XInvocation if the object was passed as
IDispatch. If, for example, the UNO interface xFoo is implemented as a dispatch object, an
instance to UNO as Any parameter is passed, and the Any contains XFoo rather then XInvocation,
then the dispatch object must be placed in a Value Object (3.4.4 Professional UNO - UNO Language
Bindings - Automation Bridge - Type Mappings - Value Objects). For example:

//UNO method
void foo([in] any)

'objUno contains an interface with the method foo.
'It expects that the argument with of type any contains an XFoo

'objFoo is a dispatch object implementing XFoo.

Dim objValueObject As Object
Set objValueObject = objServiceManager.Bridge GetValueObject ()
objValueObject.set “XFoo”, objFoo

objUno.foo objValueObject

Null pointers are converted to null pointers of the required type. That is, if an IDispatch pointer
with the value null is passed as an argument to a UNO method then the resulting argument is a
null pointer of the expected type. This also applies to UNO interface pointers, which are passed in
calls to Automation objects. When a UNO method takes a struct as an argument and it is called
from the Automation environment where a null pointer (IDispatch, or IUnknown) was supplied,
then the UNO method receives a struct that was default constructed.

Mapping of Sequence

Arrays in Automation have a particular type. The SAFEARRAY. A SAFEARRAY array is used when a
UNO function takes a sequence as an argument. To create a SAFEARRAY in C++, use Windows API
functions. The C++ name is also SAFEARRAY, but in other languages it might be named differently.
In VB for example, the type does not even exist, because it is mapped to an ordinary VB array:

Dim myarr(9) as String

JScript is different. It does not have a method to create a SAFEARRAY. Instead, JScript features an
Array object that can be used as a common array in terms of indexing and accessing its values. It is
represented by a dispatch object internally. JScript offers a VBArray object that converts a SAFE-
ARRAY into an Array object, which can then be processed further.

180 OpenOffice.org 2.0 Developer's Guide « May 2005

@;

The Automation bridge accepts both, SAFEARRAY and Array object, for arguments whose UNO
type is a sequence.

Ifa SAFEARRAY is obtained in JScript as a result of a call to an ActiveX component or a VB Script function
(for example, the Internet Explorer allows JScript and VBS code on the same page), then it can also be used
as an argument of a UNO function without converting it to an Array object.

UNO does not recognize multi-dimensional sequences. Instead, a sequences can have elements
that are also sequences. Those “inner” sequences can have different lengths, whereas the elements
of a dimension of a multi-dimensional array are all the same length.

To provide an argument for a sequence of sequences, a SAFEARRAY containing VARIANTS of SAFE-
ARRAYS has to be created. For example:

//UNO method
void foo([in] sequence< sequence< long > > value);

Dim seq(l) As Variant
Dim arl(3) As Long
Dim ar2(4) As Long
'fill arl, ar2

arl
ar2

seq (0)
seq (1)

objUno.foo seq

The array seq corresponds to the “outer” sequence and contains two VARIANTS, which in turn con-
tain SAFEARRAYS of different lengths.

It is also possible to use a multi-dimensional SAFEARRAY if the elements of the sequence are all the
same length:

Dim seq(9, 1) As Long
'fill the sequence

objUno.foo seq

Be aware that Visual Basic uses a column-oriented ordering in contrast to C. That is, the C equiva-
lent to the VB array is

long seq[2][10]
The highest dimension in VB is represented by the right-most number.

This language binding specifies that the “outer” sequence corresponds to the highest dimension.
Therefore, the VB array seq(9,1) would map to a sequence of sequences where the outer sequence
has two elements and the inner sequences each have ten elements.

Returned sequences are converted into SAFEARRAYS containing VARIANTS. If a sequence of
sequences is returned, then the VARIANTS contain again SAFEARRAYS.

To process a returned SAFEARRAY in Jscript, use the VBArray object to convert the SAFEARRAY into
a JScript Array.

When a method of an Automation object is called from UNO and a parameter is a SAFEARRAY,
then a sequence is used on the UNO side. The element type of the sequence should correspond to
the element type of the SAFEARRAY according to the default mapping. If it does not, the bridge tries
to convert the elements into the expected element type.

If the parameter is a multi—-dimensional SAFEARRAY, then one has to provide a sequence containing
sequences has to be provided. The number of nested sequences corresponds to the number of
dimensions. Since the elements of a dimension have the same length, the sequences that represent
that dimension should also have the same length. For example, assume the expected SAFEARRAY
can be expressed in C as

181

182

long ar([2][10]

Then the outer sequence must have two elements and each of those sequences has 10 elements.
That a returned sequence maps to a SAFEARRAY of VARIANTS is not ideal because it is ambiguous
when the array is passed back to UNO. However, the bridge solves this problem by using UNO
type information. For example, a returned sequence of longs will result in a SAFEARRAY of VARTI-
ANTSs containing long values. When the SAFEARRAY is passed in a method as an argument for a
parameter of type sequence<long > then it is converted accordingly. However, if the parameter is
an any, then the bridge does not have the necessary type information and converts the SAFEARRAY
to sequence<any>. That is, the called method receives an any containing a sequence<any>. If the
method now expects the any to contain a sequence<long> then it may fail. This is confusing if
there are pairs of methods like getxxx and setxxx, which take any arguments. Then you may get
a SAFEARRAY as a return value, which cannot be used in the respective setxxx call. For example:
//UNO IDL

any getByIndex();
void setByIndex ([in] any value);

'VB

Dim arLong() As Variant

arlLong = objUno.getByIndex () 'object returns sequence<long> in any

objUno.setByIndex arLong 'object receives sequence<any> in any and may cause an error.

To solve this problem, wrap the argument in a Value Object (3.4.4 Professional UNO - UNO Lan-
guage Bindings - Automation Bridge - Type Mappings - Value Objects):

'VB
Dim arLong () As Variant
arLong = objUno.getByIndex () 'object returns sequence<long> in any

Dim objValueObject As Object
Set objValueObject = objServiceManager.Bridge GetValueObject ()

objValueObject.set “[]long”, arLong
objUno.setByIndex objValueObject 'object receives sequence<long>
Mapping of type

Since there is no counterpart to the UNO type among the Automation types, it is mapped to an
object. The object implements IDispatch and a private tagging interface that is known to the
bridge. Therefore, whenever an object is passed in a call to a UNO object the bridge can determine
whether it represents a type. To obtain a type one calls Bridge CreateType on the service man-
ager object and provides the name of the type. For example:

'Visual Basic

Dim objType
Set objType = objServiceManager.Bridge_CreateType (“com.sun.star.uno.XInterface”)

In case the provided argument does not represent a valid type, the call produces an error.
If a UNO method returns a type, either as return value or out - parameter, then it is automatically

converted to an object.

//UNOIDL
type foo([out] type t)

'Visual Basic

Dim objParam As Object
Dim objReturn As Object
Set objReturn = object.foo (objParam)

Conversion Mappings

As shown in the previous section, Automation types have a UNO counterpart according to the
mapping tables. Ifa UNO function expects a particular type as an argument, then supply the corre-
sponding Automation type. This is not always necessary as the bridge also accepts similar types.
For example:

OpenOffice.org 2.0 Developer's Guide « May 2005

//UNO IDL

void func(long value);
// VB

Dim value As Byte
value = 2

obj.func vallong

The following table shows the various Automation types, and how they are converted to UNO IDL
types if the expected UNO IDL type has not been passed.

Automation IDL Types UNO IDL
(source) Types (target)
boolean (true, false) boolean
unsigned char, short, long, float, double: 0 = false, > 0 = true

string: "true" = true, "false" = false

boolean, unsigned char, short, long, float, double, string byte
double, boolean, unsigned char, short, long, float, string double
float, boolean, unsigned char, short, string float
short, unsigned char, long, float, double, string short
long, unsigned char, long, float, double, string long
BSTR, boolean, unsigned char, short, long, float, double string

short, boolean, unsigned char, long, float, double, string (1 character char
long)

long, boolean, unsigned char, short, float, double, string enum

When you use a string for a numeric value, it must contain an appropriate string representation of
that value.

Floating point values are rounded if they are used for integer values.

Be careful using types that have a greater value space than the UNO type. Do not provide an argu-
ment that exceeds the value space which would result in an error. For example:

// UNO IDL
void func([in] byte value);

// VB

Dim value as Integer

value= 1000

obj.func value 'causes an error

The conversion mappings only work with in parameters, that is, during calls from an Automation
environment to a UNO function, as far as the UNO function takes in parameters.

Client-Side Conversions

The UNO IDL description and the defined mappings indicate what to expect as a return value
when a particular UNO function is called. However, the language used might apply yet another
conversion after a value came over the bridge.

// UNO IDL

float func();

// VB
Dim ret As Single
ret= obj.func() 'no conversion by VB

Dim ret2 As String
ret2= obj.func() 'VB converts float to string

When the function returns, VB converts the float value into a string and assigns it to ret2. Such
a conversion comes in useful when functions return a character, and a string is preferred instead of
a VB Integer value.

183

184

// UNO IDL
char func();

// VB

Dim ret As String

ret= obj.func() 'VB converts the returned short into a string

Be aware of the different value spaces if taking advantage of these conversions. That is, if the value
space of a variable that receives a return value is smaller than the UNO type, a runtime error might
occur if the value does not fit into the provided variable. Refer to the documentation of your lan-
guage for client-side conversions.

Client-side conversions only work with return values and not with out or inout parameters. The
current bridge implementation is unable to transport an out or inout parameter back to Automa-
tion if it does not have the expected type according to the default mapping.

Another kind of conversion is done implicitly. The user has no influence on the kind of conversion.
For example, the scripting engine used with the Windows Scripting Host or Internet Explorer uses

double values for all floating point values. Therefore, when a UNO function returns a £loat value,
then it is converted into a double which may cause a slightly different value. For example:

// UNO IDL

float func(); //returns 3.14

// JScript

var ret= obj.func(); // implicit conversion from float to double, ret= 3.14000010490417

Value Objects

A Value Object is an Automation object which can be obtained from the bridge. It can hold a value
and a type description, hence it resembles a UNO any or a VARIANT. A Value Object can stand in
for all kinds of arguments in a call to a UNO method from a automation language. A Value Object
is used when the bridge needs additional information for the parameter conversion. This is the
case when a UNO method takes an any as argument. In many cases, however, one can do without
a Value Object if one provides an argument which maps exactly to the expected UNO type
according to the default mapping. For example, a UNO method takes an any as argument which is
expected to contain a short. Then it would be sufficient to provide a Long in Visual Basic. But in
JScript there are no types and implicitly a four byte integer would be passed to the call. Then the
any would not contain a short and the call may fail. In that case the Value Object would guarantee
the proper conversion.

A Value Object also enables in/out and out parameter in languages which only know in-parame -
ters in functions. JScript is a particular case because one can use Array objects as well as Value
Objects for those parameters.

A value Object exposes four functions that can be accessed through IDispatch. These are:

void Set([in]VARIANT type, [in]VARIANT value);
Assigns a type and a value.

void Get([out,retval] VARIANT* val);
Returns the value contained in the object. Get is used when the value Object was used as
inout or out parameter.

void InitOutParam();

Tells the object that it is used as out parameter.

void InitInOutParam([in]VARIANT type, [in]VARIANT value) ;

Tells the object that it is used as inout parameter and passes the value for the in parameter,
as well as the type.

OpenOffice.org 2.0 Developer's Guide « May 2005

When the value Object is used as in or inout parameter then specify the type of the value. The
names of types correspond to the names used in UNO IDL, except for the “object” name. The fol-
lowing table shows what types can be specified.

Name (used with Value Object) UNO IDL
char char

boolean boolean

byte byte

unsigned unsigned byte
short short

unsigned short
long

unsigned long

unsigned short
long

unsigned long

string string

float float

double double

any any

object some UNO interface

To show that the value is a sequence, put brackets before the names, for example:

[Ichar - sequence<char>

[1[lchar - sequence < sequence <char > >

[I[]1[]lchar - sequence < sequence < sequence < char > > >

The value Objects are provided by the bridge and can be obtained from the service manager
object. The service manager is a registered COM component with the Progld
“com.sun.star.ServiceManager” (Chapter 3.4.4 Professional UNO - UNO Language Bindings - Auto-

mation Bridge - The Service Manager Component). For example:

// JScript

var valueObject= objSericeManager.Bridge GetValueObject ()’

To use a Value Object as in parameter, specify the type and pass the value to the object:

// UNO IDL

void doSomething([in] sequence< short > ar);

// JScript

var value= objServiceManager.Bridge_GetValueObject () ;

var array= new Array(l,2,3);
value.Set (" []short",array) ;
object.doSomething (value) ;

In the previous example, the value Object was defined to be a sequence of short values.

array could also contain value Objects again:

var valuel= objServiceManager.Bridge GetValueObject () ;
var value2= objServiceManager.Bridge GetValueObject ();

valuel.Set ("short"“, 100);
value2.Set ("short", 111);
var array= new Array();
array[0]= valuel;
array[l]= value2;

var allValue= objServiceManager.Bridge GetValueObject ()

allvalue.Set (" []short"™, array):;
object.doSomething (allValue) ;

If a function takes an out parameter, tell the value Object like this:

// UNO IDL
void doSomething([out] long);

// JScript

var value= objServiceManager.Bridge GetValueObject () ;

value.InitOutParam() ;

185

186

object.doSomething (value) ;
var out= value.Get ();

When the value Object is an inout parameter, it needs to know the type and value as well:

//UNO IDL
void doSomething([inout] long) ;

//JScript

var value= objServiceManager.Bridge GetValueObject ();
value.InitInOutParam("long", 123);
object.doSomething (value) ;

var out= value.Get();

Exceptions and Errorcodes

UNO interface functions may throw exceptions to communicate an error. Automation objects pro-
vide a different error mechanism. First, the IDispatch interface describes a number of error codes
(HRESULTs) that are returned under certain conditions. Second, the Invoke function takes an argu-
ment that can be used by the object to provide descriptive error information. The argument is a
structure of type EXCEPINFO and is used by the bridge to convey exceptions being thrown by the
called UNO interface function. In case the UNO method throws an exception the bridge fills
EXCEPINFO with these values:

EXCEPINFO: :wCode = 1001
EXCEPINFO: :bstrSource = “[automation bridge]”

EXCEPINFO: :bstrDescription = type name of the exceptions + the message of the exception
(com::sun::star::uno::Exception::message)

Also the returned error code will be DISP_E EXCEPTION .

Since the automation bridge processes the Invoke call and calls the respective UNO method in the
end, there can be other errors which are not caused by the UNO method itself. The following table
shows what these errors are and how they are caused.

HRESULT Reason

DISP_E_EXCEPTION - UNO interface function or property access function threw
an exception and the caller did not provide an
EXCEPINFO argument.

Bridge error. A ValueObject could not be created when the
client called Bridge GetValueObject.

Bridge error. A struct could not be created when the client
called Bridge GetStruct

Bridge error. A wrapper for a UNO type could not be cre-
ated when the client called Bridge CreateType

Bridge error. The automation object contains a UNO object
that does not support the XInvocation interface. Could
be a failure of com.sun.star.script.Invocation
service.

In JScript was an Array object passed as inout param and
the bridge could not retrieve the property “0”.

A conversion of a VARIANTARG (DISPPARAMS structure)
failed for some reason.

Parameter count does not tally with the count provided by
UNO type information (only when one DISPPARAMS con-

OpenOffice.org 2.0 Developer's Guide « May 2005

HRESULT Reason

tains VT _DISPATCH). This is a bug. DISP_E BADPARAM-
COUNT should be returned.

DISP_E_NONAMEDARGS - The caller provided “named arguments” for a call to a
UNO function.

DISP_E_BADVARTYPE - Conversion of VARIANTARGs failed.

Bridge error: Caller provided a ValueObject and the
attempt to retrieve the value failed. This is possibly a bug.
DISP_E EXCEPTION should be returned.

A member with the current name does not exist according
to type information. This is a bug. DISP_E MEMBERNOT-
FOUND should be returned.

- The argument in Bridge CreateType was no string or
could not be converted into one

DISP_E_BADPARAMCOUNT - A property was assigned a value and the caller provided
null or more than one arguments.

- The caller did not provide the number of arguments as
required by the UNO interface function.

+ Bridge CreateType was called wher the number of
arguments was not one.

DISP_E_MEMBERNOTFOUND - Invoke was called with a DISPID that was not issued by
GetIDsOfName

There is no interface function (also property access func-
tion) with the name for which Invoke is currently being

called.
DISP_E_TYPEMISMATCH The called provided an argument of a false type.
DISP_E_OVERFLOW An argument could not be coerced to the expected type.

Internal call to XInvocation: :invoke resulted in a Can-
notConvertException being thrown. The field reason
has the value OUT_OF RANGE which means that a given value
did not fit in the range of the destination type.

E_UNEXPECTED [2]results from
com.sun.star.script.CannotConvertException of
XInvocation: :invoke with FailReason: : UNKNOWN.
Internal call to XInvocation: :invoke resulted in a
com.sun.star.script.CannotConvertException
being thrown. The field reason has the value UNKNOWN, which
signifies some unknown error condition.

E_POINTER Bridge GetValueObject or Bridge GetStruct called
and no argument for return value provided.
S_OK Ok.

Return values of IDispatch::GetIDsOfNames:

HRESULT Reason
E_POINTER Caller provided no argument that receives the DISPID.
DISP_E_UNKNOWNNAME There is no function or property with the given name.

187

188

HRESULT
S_OK

Reason

Ok.

The functions IDispatch::GetTypeInfo and GetTypeInfoCount return E NOTIMPL

When a call from UNO to an Automation object is performed, then the following HRESULT values
are converted to exceptions. Keep in mind that it is determined what exceptions the functions of

XInvocation are allowed to throw.

Exceptions thrown by XInvocation: :invoke () and their HRESULT counterparts:

HRESULT Exception

DISP_ E BADPARAMCOUNT com.sun.star.lang.IllegalArgumentException

DISP_E BADVARTYPE com.sun.star.uno.RuntimeException

DISP_E EXCEPTION com.sun.star.reflection.InvocationTargetExcept
ion

DISP_E. MEMBERNOTFOUND com.sun.star.lang.IllegalArgumentException

DISP_E NONAMEDARGS com.sun.star.lang.IllegalArgumentException

DISP_E OVERFLOW com.sun.star.script.CannotConvertException

reason= FailReason: :0UT_OF RANGE

DISP E PARAMNOTFOUND
DISP_E TYPEMISMATCH

com.sun.star.lang.IllegalArgumentException

com.sun.star.script.CannotConvertException
reason= FailReason: : UNKNOWN

DISP_E UNKNOWNINTERFACE com.sun.star.uno.RuntimeException

DISP_E UNKNOWNLCID com.sun.star.uno.RuntimeException

DISP E PARAMNOTOPTIONAL com.sun.star.script.CannotConvertException,
T reason= FailReason::NO DEFAULT AVAILABLE

XInvocation::setValue() throws the same as invoke () except for:

HRESULT

DISP_E BADPARAMCOUNT
DISP_E_MEMBERNOTFOUND
DISP_E NONAMEDARGS

Exception

com.sun.star.uno.RuntimeException

com.sun.star.beans.UnknownPropertyException

com.sun.star.uno.RuntimeException

XInvocation::getValue () throws the same as invoke () except for:

HRESULT
DISP_E_BADPARAMCOUNT
DISP_E_EXCEPTION

DISP_E_ MEMBERNOTFOUND
DISP_E_ NONAMEDARGS
DISP_E_OVERFLOW

DISP_E_ PARAMNOTFOUND
DISP_E_TYPEMISMATCH
DISP_E_ PARAMNOTOPTIONAL

OpenOffice.org 2.0 Developer's Guide « May 2005

Exception

com.

com.

com.

com.

com.

com.

com.

com.

sun

sun.

sun.

sun.

sun.

sun.

sun.

sun.

.star

star

star

star

star

star

star

star.

.uno.RuntimeException
.uno.RuntimeException
.beans.UnknownPropertyException
.uno.RuntimeException
.uno.RuntimeException
.uno.RuntimeException

.uno.RuntimeException

uno.RuntimeException

Automation Objects with UNO Interfaces

It is common that UNO functions take interfaces as arguments. As discussed in section 3.4.4 Profes-
sional UNO - UNO Language Bindings - Automation Bridge - Usage of Types, those objects are usually
obtained as return values of UNO functions. With the Automation bridge, it is possible to imple-
ment those objects even as Automation objects and use them as arguments, just like UNO objects.

Although Automation objects can act as UNO objects, they are still not fully functional UNO
components. That is, they cannot be created by means of the service manager. Also, there is no
mapping of UNO exceptions defined. That is, an UNO object implemented as automation object
cannot make use of exceptions nor can it convey them in any other way.

One use case for such objects are listeners. For example, if a client wants to know when a writer
document is being closed, it can register the listener object with the document, so that it will be
notified when the document is closing.

Requirements

Automation objects implement the IDispatch interface, and all function calls and property opera-
tions go through this interface. We imply that all interface functions are accessed through the dis-
patch interface when there is mention of an Automation object implementing UNO interfaces. That
is, the Automation object still implements IDispatch only.

Basically, all UNO interfaces can be implemented as long as the data types used with the functions
can be mapped to Automation types. The bridge needs to know what UNO interfaces are sup-
ported by an Automation object, so that it can create a UNO object that implements all those inter-
faces. This is done by requiring the Automation objects to support the property Bridge imple-
mentedInterfaces, which is an array of strings. Each of the strings is a fully qualified name of an
implemented interface. If an Automation object only implements one UNO interface, then it does
not need to support that property.

You never implement com.sun.star.script.XInvocationand com.sun.star.uno.XInterface.
XInvocation cannot be implemented, because the bridge already maps IDispatchto XInvocation
internally. Imagine a function that takes an XInvocation:

// UNO IDL
void func([in] com.sun.star.script.XInvocation obj) ;

In this case, use any Automation object as argument. When an interface has this function,

void func([in] com.sun.star.XSomething obj)

the automation object must implement the functions of XSomething, so that they can be called through
IDispatch::Invoke.

Examples

The following example shows how a UNO interface is implemented in VB. It is about a listener
that gets notified when a writer document is being closed.

To rebuild the project use the wizard for an ActiveX dll and put this code in the class module. The
component implements the com.sun.star.lang.XEventListener interface.

Option Explicit
Private interfaces(0) As String

Public Property Get Bridge ImplementedInterfaces() As Variant
Bridge ImplementedInterfaces = interfaces
End Property

Private Sub Class_Initialize()

interfaces (0) = "com.sun.star.lang.XEventListener"
End Sub

189

190

Private Sub Class_Terminate ()

On Error Resume Next

Debug.Print "Terminate VBEventListener"
End Sub

Public Sub disposing(ByVal source As Object)
MsgBox "disposing called"
End Sub

You can use these components in VB like this:

Dim objServiceManager As Object
Dim objDesktop As Object
Dim objDocument As Object
Dim objEventListener As Object

Set objServiceManager= CreateObject ("com.sun.star.ServiceManager")
Set objDesktop= objServiceManager.createlInstance ("com.sun.star.frame.Desktop")

'Open a new empty writer document

Dim args ()

Set objDocument= objDesktop.loadComponentFromURL ("private:factory/swriter", " blank", 0, args)
'create the event listener ActiveX component

Set objEventListener= CreateObject ("VBasicEventListener.VBEventListener")

'register the listener with the document
objDocument.addEventListener objEventlistener

The next example shows a JScript implementation of a UNO interface and its usage from JScript.
To use JScript with UNO, a method had to be determined to realize arrays and out parameters.
Presently, if a UNO object makes a call to a JScript object, the bridge must be aware that it has to
convert arguments according to the JScript requirements. Therefore, the bridge must know that
one calls a JScript component, but the bridge is not capable of finding out what language was used.
The programmer has to provide hints, by implementing a property with the name “ environ-
ment”that has the value "JScript".

// UNO IDL: the interface to be implemented

interface XSimple : public com.sun.star.uno.XInterface

{
void funcl([in] long val, [out] long outVal);
long func2([in] sequence< long > val, [out] sequence< long > outVal);
void func3([inout]long);

bi

// JScript: implementation of XSimple
function XSimplImpl ()
{
this. environment= "JScript";
this.Bridge_ implementedInterfaces= new Array("XSimple");

// the interface functions
this.funcl= funcl impl;
this.func2= func2_impl;
this.func3= func3_impl;

}

function funcl impl(inval, outval)
{
//outval is an array
outval[0]= 10;

}

function func2 impl (inArray, outArray)
{

outArray[0]= inArray;

// or

outArray[0]= new Array(1l,2,3);

return 10;

}

function func3_impl (inoutval)
{
var val= inoutvall[0];
inoutval [0]= val+l;

Assume there is a UNO object that implements the following interface function:

OpenOffice.org 2.0 Developer's Guide « May 2005

//UNO IDL
void doSomething([in] XSimple) ;

Now, call this function in JScript and provide a JScript implementation of xSimple:
<script language="JScript">

var factory= new ActiveXObject ("com.sun.star.ServiceManager") ;

// create the UNO component that implements an interface with the doSomething function
var oletest= factory.createInstance ("oletest.OleTest");

oletest.doSomething (new XSimpleImpl()) ;

To build a component with C++, write the component from scratch or use a kind of framework,
such as the Active Template Library (ATL). When a dual interface is used with ATL, the imple-
mentation of IDispatch is completely hidden and the functions must be implemented as if they
were an ordinary custom interface, that is, use specific types as arguments instead of VARIANTSs. If a
UNO function has a return value, then it has to be specified as the first argument which is flagged
as “retval”.

</script>
// UNO IDL
interface XSimple : public com.sun.star.uno.XInterface
{
void funcl([in] long val, [out] long outVal);
long func2([in] sequence< long > val, [out] sequence< long > outVal);

}i

//IDL of ATL component
[
object,
UU1d (XXXXXXXX-XXXKX~XXXX~XXXX—XXXXXXKXKXXXKX) ,
dual,
helpstring ("ISimple Interface"),
pointer default (unique)

]
interface ISimple : IDispatch

{

[id (1), helpstring("method funcl")]
HRESULT funcl([in] long val, [out] long* outVal);

[id(2), helpstring("method func2")]
HRESULT func2 ([out,retval] long ret, [in] SAFEARRAY (VARIANT) val,

[out] SAFEARRAY (VARIANT) * outVal);
[propget, id(4), helpstring("property implementedInterfaces")]
HRESULT Bridge implementedInterfaces([out, retval] SAFEARRAY (BSTR) *pVal);

DCOM

The Automation bridge maps all UNO objects to automation objects. That is, all those objects
implement the 1Dispatch interface. To access a remote interface, the client and server must be able
to marshal that interface. The marshaling for 1Dispatch is already provided by Windows, there-
fore all objects which originate from the bridge can be used remotely.

To make DCOM work, apply proper security settings for client and server. This can be done by
setting the appropriate registry entries or programmatically by calling functions of the security API
within the programs. The office does not deal with the security, hence the security settings can only
be determined by the registry settings which are not completely set by the office's setup. The AppID
key under which the security settings are recorded is not set. This poses no problem because the
dcomcnfg.exe configuration tools sets it automatically.

To access the service manager remotely, the client must have launch and access permission. Those
permissions appear as sub-keys of the AppID and have binary values. The values can be edited
with dcomcenfg. Also the identity of the service manager must be set to “Interactive User”. When
the office is started as a result of a remote activation of the service manager, it runs under the
account of the currently logged-on user (the interactive user).

In case of callbacks (office calls into the client), the client must adjust its security settings so that
incoming calls from the office are accepted. This happens when listener objects that are imple-

191

192

mented as Automation objects (not UNO components) are passed as parameters to UNO objects,
which in turn calls on those objects. Callbacks can also originate from the automation bridge, for
example, when JScript Array objects are used. Then, the bridge modifies the Array object by its
IDispatchEx interface. To get the interface, the bridge has to call QueryInterface with a call back
to the client.

To avoid these callbacks, VBArray objects and Value Objects could be used.

To set security properties on a client, use the security API within a client program or make use of
dcomcnfg again. The API can be difficult to use. Modifying the registry is the easiest method, sim-
plified by dcomcnfg. This also adds more flexibility, because administrators can easily change the
settings without editing source code and rebuilding the client. However, dcomcnfg only works with
COM servers and not with ordinary executables. To use dcomcnfg, put the client code into a server
that can be registered on the client machine. This not only works with exe servers, but also with in-
process servers, namely dlls. Those can have an AppID entry when they are remote, that is, they
have the D11Surrogate subkey set. To activate them an additional executable which instantiates
the in-process server is required. At the first call on an interface of the server DCOM initializes
security by using the values from the registry, but it only works if the executable has not called
CoInitializeSecurity beforehand.

To run JScript or VBScript programs, an additional program, a script controller that runs the script
is required, for example, the Windows Scripting Host (WSH). The problem with these controllers is
that they might impose their own security settings by calling CoInitializeSecurity on their own
behalf. In that case, the security settings that were previously set for the controller in the registry
are not being used. Also, the controller does not have to be configurable by dcomenfg, because it
might not be a COM server. This is the case with WSH (not WSH remote).

To overcome these restrictions write a script controller that applies the security settings before a
scripting engine has been created. This is time consuming and requires some knowledge about the
engine, along with good programming skills. The Windows Script Components (WSC) is easier to
use. A WSC is made of a file that contains XML, and existing JScript and VBS scripts can be put
into the respective XML Element. A wizard generates it for you. The WSC must be registered,
which can be done with regsvr32.exe or directly through the context menu in the file explorer. To
have an AppID entry, declare the component as remotely accessible. This is done by inserting the
remotable attribute into the registration element in the wsc file:

<registration
description="writerdemo script component"
progid="dcomtest.writerdemo.WSC”
version="1.00"
classid="{90c5cala-5e38-4c6d-9634-b0c740c56%ad}"
remotable="true">

When the WSC is registered, there will be an appropriate AppID key in the registry. Use dcomcnfg
to apply the desired security settings on this component. To run the script. An executable is
required. For example:

Option Explicit

Sub main ()
Dim obj As Object
Set obj = CreateObject ("dcomtest.writerdemo.wsc”)
obj.run

End Sub

In this example, the script code is contained in the run function. This is how the wsc file appears:

<?xml version="1.0"?2>

<component>

<?component error="true" debug="true"?>

<registration
description="writerdemo script component"
progid="dcomtest.writerdemo.WSC”
version="1.00"
classid="{90c5cala-5e38-4c6d-9634-b0c740c569%ad}"
remotable="true">

</registration>

<public>

OpenOffice.org 2.0 Developer's Guide « May 2005

<method name="run">

</method>
</public>
<script language="JScript">
<! [CDATA[
var description = new jscripttest;
function jscripttest(
{

this.run = run;
}
function run()
{
var objServiceManager= new ActiveXObject ("com.sun.star.ServiceManager”,"\\j1l-1036") ;
var objCoreReflection= objServiceManager.createInstance ("com.sun.star.reflection.CoreReflection") ;
var objDesktop= objServiceManager.createInstance ("com.sun.star.frame.Desktop") ;
var objCoreReflection= objServiceManager.createlInstance ("com.sun.star.reflection.CoreReflection");
var args= new Array();
var objDocument= objDesktop.loadComponentFromURL ("private:factory/swriter", " blank", 0, args);
var objText= objDocument.getText () ;
var objCursor= objText.createTextCursor () ;
objText.insertString(objCursor, "The first line in the newly created text document.\n", false);
objText.insertString(objCursor, "Now we're in the second line", false);
var objTable= objDocument.createlnstance("com.sun.star.text.TextTable");objTable.initialize(4, 4);
objText.insertTextContent (objCursor, objTable, false);
var objRows= objTable.getRows () ;
var objRow= objRows.getByIndex(0);
objTable.setPropertyValue ("BackTransparent", false);
objTable.setPropertyValue ("BackColor", 13421823);
objRow.setPropertyValue ("BackTransparent", false);
objRow.setPropertyValue ("BackColor", 6710932);
insertIntoCell("Al","FirstColumn", objTable);
insertIntoCell ("Bl","SecondColumn", objTable) ;
insertIntoCell("C1","ThirdColumn", objTable);
insertIntoCell("D1","SUM", objTable);
objTable.getCellByName ("A2") .setValue (22.5);
objTable.getCellByName ("B2") .setValue(5615.3) ;
objTable.getCellByName ("C2") .setValue(-2315.7);
objTable.getCellByName ("D2") .setFormula ("sum <A2:C2>") ;objTable.getCellByName ("A3") .setValue(21.5);
objTable.getCellByName ("B3") .setValue(615.3);
objTable.getCellByName ("C3") .setValue(-315.7);
objTable.getCellByName ("D3") .setFormula("sum <A3:C3>");objTable.getCellByName ("A4") .setValue(121.5);
objTable.getCellByName ("B4") .setValue(-615.3);
objTable.getCellByName ("C4") .setValue(415.7);
objTable.getCellByName ("D4") .setFormula ("sum <A4:C4>");
objCursor.setPropertyValue ("CharColor", 255);
objCursor.setPropertyValue ("CharShadowed", true);
objText.insertControlCharacter(objCursor, 0 , false);
objText.insertString(objCursor, " This is a colored Text - blue with shadow\n",
false) ;objText.insertControlCharacter (objCursor, 0, false);
var objTextFrame= objDocument.createInstance ("com.sun.star.text.TextFrame”) ;
var objSize= createStruct ("com.sun.star.awt.Size");
objSize.Width= 15000;
objSize.Height= 400;
objTextFrame.setSize (objSize) ;
objTextFrame.setPropertyValue ("AnchorType", 1);
objText.insertTextContent (objCursor, objTextFrame, false);
var objFrameText= objTextFrame.getText () ;
var objFrameTextCursor= objFrameText.createTextCursor () ;
objFrameText.insertString(objFrameTextCursor, "The first line in the newly created text frame.",

false);
objFrameText.insertString (objFrameTextCursor,
"With this second line the height of the frame raises.", false);

objFrameText.insertControlCharacter (objCursor, 0 , false);
objCursor.setPropertyValue ("CharColor", 65536);
objCursor.setPropertyValue ("CharShadowed", false);
objText.insertString(objCursor, " That's all for now !!", false);

function insertIntoCell(strCellName, strText, objTable)

{
var objCellText= objTable.getCellByName (strCellName) ;
var objCellCursor= objCellText.createTextCursor () ;
objCellCursor.setPropertyValue("CharColor",16777215) ;
objCellText.insertString(objCellCursor, strText, false);

}

function createStruct (strTypeName)

{
var classSize= objCoreReflection.forName (strTypeName) ;
var aStruct= new Array();
classSize.createObject (aStruct);
return aStruct[0];

}

}

11>

</script>

</component>

This WSC contains the WriterDemo example written in JScript.

193

The Bridge Services

Service: com.sun.star.bridge.oleautomation. BridgeSupplier

% Prior to OpenOffice.org2.0 the service was named com.sun.star.bridge.OleBridgeSupplier2.

The component implements the com.sun.star.bridge.xBridgeSupplier2 interface and converts
Automation values to UNO values. The mapping of types occurs according to the mappings
defined in 3.4.4 Professional UNO - UNO Language Bindings - Automation Bridge - Type Mappings.

Usually you do not use this service unless you must convert a type manually.

A programmer uses the com.sun.star.ServiceManager ActiveX component to access the office.
The COM class factory for com.sun.star.ServiceManager uses BridgeSupplier internally to
convert the UNO service manager into an Automation object. Another use case for the BridgeSup -
plier might be to use the SDK without an office installation. For example, if there isa UNO compo-
nent from COM, write code which converts the UNO component without the need of an office.
That code could be placed into an ActiveX object that offers a function, such as

getUNOComponent ().

The interface is declared as follows:
module com { module sun { module star { module bridge {

interface XBridgeSupplier2: com::sun::star::uno::XInterface

{

any createBridge (any aModelDepObject,

sequence< byte > aProcessId,
short nSourceModelType,
short nDestModelType)

raises(com::sun::star::lang::IllegalArgumentException);

[I T

The value that is to be converted and the converted value itself are contained in anys. The any is
similar to the VARIANT type in that it can contain all possible types of its type system, but that type
system only comprises UNO types and not Automation types. However, it is necessary that the
function is able to receive as well as to return Automation values. In C++, void pointers could have
been used, but pointers are not used with UNO IDL. Therefore, the any can contain a pointer to a
VARIANT and that the type should be an unsigned long.

To provide the any, write this C++ code:

Any automObject;
// pVariant is a VARIANT* and contains the value that is going to be converted
automObject.setValue ((void*) &pVariant, getCppuType ((sal_uInt32%*)0));

Whether the argument aModelDepObiject or the return value carries a VARIANT depends on the
mode in which the function is used. The mode is determined by supplying constant values as the
nSourceModelType and nDestModelType arguments. Those constant are defined as follows:

module com { module sun { module star { module bridge {
constants ModelDependent
{
const short UNO ig
const short OLE 25
const short JAVA = 3;
const short CORBA = 4;

[I A

The table shows the two possible modes:

194 OpenOffice.org 2.0 Developer's Guide « May 2005

nSourceModelType nDestModelType aModelDepObject Return Value
UNO OLE contains UNO value contains VARIANT*
OLE UNO contains VARIANT* contains UNO value

When the function returns a VARIANT*, that is, a UNO value is converted to an Automation value,
then the caller has to free the memory of the VARIANT:

sal_ulInt8 arId[16];
rtl getGlobalProcessId(arId);
Sequence<sal_ Int8> procId((sal_Int8*)arId, 16);
Any anyDisp= xSupplier->createBridge (anySource, procId, UNO, OLE) ;
IDispatch* pDisp;
if (anyDisp.getValueTypeClass() == TypeClass UNSIGNED LONG)
{
VARIANT* pvar= * (VARIANT**)anyDisp.getValue() ;
if (pvar->vt == VT DISPATCH)
{
pDisp= pvar->pdispVal;
pDisp->AddRef () ;
}

VariantClear (pvar);

CoTaskMemFree (pvar);
}
The function also takes a process ID as an argument. The implementation compares the ID with the
ID of the process the component is running in. Only if the IDs are identical a conversion is per-

formed. Consider the following scenario:

There are two processes. One process, the server process, runs the BridgeSupplier service.
The second, the client process, has obtained the XBridgeSupplier2 interface by means of the
UNO remote bridge. In the client process an Automation object is to be converted and the func-
tion xBridgeSupplier2::createBridge is called. The interface is actually a UNO interface
proxy and the remote bridge will ensure that the arguments are marshaled, sent to the server
process and that the original interface is being called. The argument aModelDepObJject contains
an IDispatch*and must be marshaled as COM interface, but the remote bridge only sees an
any that contains an unsigned long and marshals it accordingly. When it arrives in the server
process, the IDispatch*has become invalid and calls on it might crash the application.

Service: com.sun.star.bridge.OleBridgeSupplierVarl

This service has been deprecated as of OpenOffice.org2.0.

Service: com.sun.star.bridge.oleautomation. ApplicationRegistration

Prior to OpenOffice.org2.0 this service was named com.sun.star.bridge.OleApplicationRegistration.

This service registers a COM class factory when the service is being instantiated and deregisters it
when the service is being destroyed. The class factory creates a service manager as an Automation
object. All UNO objects created by the service manager are then automatically converted into
Automation objects.

Service: com.sun.star.bridge.oleautomation. Factory

Prior to OpenOffice.org2.0 this service was named com.sun.star.bridge.OleObjectFactory.

195

196

This service creates ActiveX components and makes them available as UNO objects which imple-
ment XxInvocation. For the purpose of component instantiation, the OleClient implements the
com.sun.star.lang.XMultiServiceFactory interface. The COM component is specified by its
programmatic identifier (Progld).

Although any ActiveX component with a Progld can be created, a component can only be used if it
supports IDispatch and provides type information through IDispatch::GetTypelInfo.

Unsupported COM Features

The Automation objects provided by the bridge do not provide type information. That is, IDis-
patch: :GetTypeInfoCount and IDispatch::GetTypeInfo return E_NOTIMPL. Also, there are no
COM type libraries available and the objects do not implement the IProvideClassInfo[2] inter-
face.

GetIDsOfName processes only one name at a time. If an array of names is passed, then a DISPID is
returned for the first name.

IDispatch: :Invoke does not support named arguments and the pExcepInfo and puArgErr param -
eter.

3.4.5 CLI Language Binding

About the Language Binding

The CLI (Common Language Infrastructure) language binding allows CLI programs to connect to
an office and perform operations on it, such as creating and converting documents. A CLI-pro-
gram consists of IL (Intermediate Language) code and can be produced by tools, such as C# or VB
.NET compilers. The binding provides for type-safe programming. All UNO types are available as
CLI types.

CLI - components are not fully supported. That is, although one can implement UNO interfaces in
a CLI language there is no support for creating instances by means of the office's service manager.
More accurately, one cannot register the components with unopkg and load them later from
within the running program.

Currently the language binding is only available for the Windows operating system.

Terms

The following CLI-related abbreviations are used within this document:
s IL =Intermediate Language

s CLI=Common Language Infrastructure

» CLR =Common Language Runtime

s CTS =Common Type System

OpenOffice.org 2.0 Developer's Guide « May 2005

Requirements

The language binding is part of OpenOffice.org 2.0 and is only available for Windows platforms,
such as Windows XP and Windows 2000. Refer to the documentation of the Microsoft .NET Frame-
work to find out which operating systems are supported and which prerequisites have to be ful-
filled. A Microsoft .NET Framework Version 1.1 must be installed.

Supported Languages

The language binding should generally enable all CLI languages to be used with UNO. However,
not every language may be suitable, because of missing features. For example, since UNO uses out
parameters, the CLI language must support it as well, which is not given in JScript .NET.

The language binding was successfully tested with C# and VB code. We found that the C++ com-
piler provides false IL code in conjunction with arrays of enumeration values. This can cause
exceptions, as the following example shows:

__value enum Colors {Red, Green, Blue};

public gc class Test
{

public:
static void foo ()
{
Colors ar[] = new Colors[1l];
ar[0] = Red;

Object* o = ar->GetValue (0);

}
/e
}
When calling ar->Getvalue (0), then a System.ExecutionEngineException is thrown. Looking
at the IL reveals two significant differences to code produced by a C# compiler. First, the array ar
is constructed as array of System.Enum and not as Colors. Therefore ar->GetType () would return
a type for System.Enum instead of Colors. Second, ar->Getvalue () is compiled toa “call”
instruction instead of “callvirt”. The example caused the same exception even when compiled
with a compiler from the framework SDK version 1.1.

As a workaround you can provide arrays of System.Int32 for pure in parameter. There is no
workaround for in/out and out parameter. Return values are not affected by this bug.

Another problem is that C++ does not support jagged arrays. Although it is possible to create an
array of System.Array it is no substitute for a jagged array, since they have different types. There-
fore, the compiler will produce an error if you try to pass an Array instance rather then a jagged
array.

The Language Binding DLLs

The language binding comprises five libraries. Some of these do not need to be dealt with by the
programmer, but others must be used during the development or deployment process. All libraries
compiled for the CLI are prefixed by “cli_” to separate them from ordinary native libraries:

cli_ uno.dll: This is the CLI-UNO bridge that realizes the interaction between managed code
(CLI) and UNO. It does not provide public types.

cli_cppuhelper.dll: Provides bootstrapping code to bootstrap native UNO, that is, to use various
UNO services implemented in different languages. Types from this assembly are always used
in client programs.

197

198

cli_ure.dll: Contains helper classes which are useful for implementing UNO interfaces. Types
from this assembly are not necessarily used.

cli_types.dll: Provides classes and interfaces for components and client programs. It is a collec-
tion of all UNO interfaces currently used in the office. Types from this assembly are always
used in client programs.

cli_basetypes.dll: As the name implies, it provides some base types, which are already needed
for the generated UNO types in cli_types.dll. Since it contains the Any type, probably all pro-
grams need this library. Also the cli_types.dll depends on it.

These libraries are part of OpenOffice.org 2.0. Except for cli_uno.dll, they are installed in the
Global Assembly Cache (GACQ).

Type Mapping

General

The CLI language binding is intended to run programs that connect to an office and that are
written in a CLI compliant language. Therefore, all UNO Types have to be mapped to a CLI type.
However, it is not necessary to have mappings for all CLI types unless you intend to interact with
arbitrary CLI programs (not UNO components) from UNO (binary UNO). Since we focus on inter-
action with UNO components, we will restrict the mapping to UNO types. Other mappings might
be introduced at a later stage (for example, System.Decimal, indexers, and so on.).

This document only covers the complete mapping of UNO types to CLI.

UNO types will be mapped to types from the Common Type System (CTS). Although some types
are not CLS compliant (for example, unsigned types are used), they should be usable from various
CLI programming languages.This document will represent CTS types by the respective class from
the framework class library, where possible. .NET languages may provide particular build-in
types, which can be used instead of those classes. For example, in C# you can use int rather than
System.Int32.

Since this type mapping specification targets the CLI as a whole, mappings can be given as IL
assembler code. However, for easier understanding, mappings are mostly described by C# exam-
ples.

Metadata is provided in IL assembler syntax.

This document refers to the subject of how UNO types are defined in a certain language. This sub-
ject is to be regarded as hypothetical, since current implementations of the UNO runtime do not
allow for new types to be introduced by language bindings. For example, a component written in
C# or Java may contain new types which should be used across the UNO system. Currently, new
types have to be provided as binary output of the idlc compiler, which have to be made known to
UNO, for example by merging them into a central types.rdb. In a remote scenario, those type bina-
ries must be present in all participating processes.

Type Name Decoration

IDL type names can potentially conflict with type names of a particular language, or a name from
one language could also be used in another language. In these cases, interactions between those
language environments are prone to errors, because types are misinterpreted and incorrectly han-
dled. To counter the problem, the bridge decorates all imported and exported type names. For
example, the type a.b.c is transferred from one environment into a .NET environment. Then the
bridge prefixes the name with a string, so that the name is unoidl.a.b.c When that type is sent

OpenOffice.org 2.0 Developer's Guide « May 2005

back into the environment where it came from, then the bridge removes the linoidl."prefix. Like-
wise, if a type that was defined in the CLI environment is transferred out of that environment, the
name is prefixed with £11i."On return, the prefix will be removed again. For more information, see
the concept paper Names in UNO. It can be found at:
http://udk.openoffice.org/common/man/names.html .

When CLI types are declared, their names must not start with inoidl."And types declared in
UNOIDL must not start with &1i."

Type Mappings

Simple Types

Simple types are mapped according to the following table.

UNOIDL Type

CLI Framework class (namespace System)

boolean Boolean
byte Byte
short Int16
long Int32
hyper Int64
unsigned short Ulnt16
unsigned long Ulnt32
unsigned hyper Ulnt64
float Single
double Double
char Char
string String
type Type
void (¥*) Void (**)

*In type declarations void is only used as a return type.
**Similar to UNOS com.sun.star.uno.TypeClass there is a System. TypeCode enumeration
which, however, does not contain a value for void.

any

the any type will be mapped to a value type with the name uno.2Any. For example:

//UNOIDL

void func([in]any val);

//C#

virtual void func(uno.Any val);

199

http://udk.openoffice.org/common/man/names.html

200

Although a System.Object can represent all types, it was decided to not use it, for the following
reasons:

First, in UNO only, an interface can have no value, which amounts to a null reference in C# or a
null pointer in C++. The any can represent all uno types and additionally knows a void state (
com::sun::star::uno::TypeClass VOID). If the any is mapped to System.Object then a CLI
null reference would represent both an interface with a null value and a void any. This distinction
is important.

Second, the any can contain a particular interface. The consumer of the any knows exactly what
type the any contains because of the provided type information, and is spared to determine the
type by using casts.

The function hasvalue determines if the type class is of TypeClass VOID, in other words, if the
any carries a value. The Any class also overrides the methods, Equals, ToString and GetHashCode
from System.Object. Thers is also an Equals implementation which takes an Any as argument.
Hence the argument does not require unboxing as the overridden Equals method does. The any
offers a bunch of constructors. For complete initialization it needs a System.Type and a
System.Object:

public Any(System.Type type, System.Object)

Because the type of an object can be identified by Object.GetType, it is in some cases unnecessary
to specify the type. Therefore there are also a couple of constructors, which only take the object as
argument. For example:

public Any(char value)

public Any(bool value)

However, when an UNO interface or struct is to be put in an Any then the type must be explicitly
provided, because structs can be derived and interface implementations can derive from multiple
interfaces. Then Object.GetType may then not return the intended type.

At this point the polymorphic structs needs to be mentioned in particular, because they currently
require to provide a uno.PolymorphicType in the Any constructor:

//C#

PolymorphicType t = PolymorphicType.GetType (
typeof (unoidl.com.sun.star.beans.Optional),
“unoidl.com.sun.star.beans.Optional<System.Char>") ;
Any a = new Any(t, objStruct);

The Any contains a static member VOID which can be used whenever a void Any is needed:
//CH

obj.functionWithVoidAnyArgument (uno.Any.VOID) ;
The type and value contained in the Any can be accessed by read-only properties named Type and
Value. One can also subsequently assign new values by calling setValue. This can be useful, when

handling arrays. For example:
//ck
uno.Any[] ar = new uno.Any[1000];

foreach (uno.Any a in ar)
a.setValue (typeof (char), 's');

One could also construct new Any instances and assign them:

foreach (uno.Any a in ar)
a = new uno.Any('c');

OpenOffice.org 2.0 Developer's Guide « May 2005

setValue and the read access to the Type property may change the state of the instance. Therefore
one has to make sure that concurrent access is synchronized. When an aAny is default constructed,
for example when creating an array of Anys, then the member representing the Any's type is null.
Only when the Type property is accessed and setvValue has not been called yet, then the type is set
to void. This setting of the member may interfere with setvalue, hence the need for synchroniza-
tion. However, in most cases synchronization is not necessary.

The uno.Any is contained in the cli_basetypes.dll and the C# source file can be found in the cli_ure
project (cli_ure/source/basetypes/uno/Any.cs).

interface
General

UNOIDL interface types map to CTS interface types with public accessibility. If a UNO interface
inherits an interface, then the target interface will do as well.

Methods
General

All methods have public accessibility. The method names and argument names of the target type
are the same as the respective names in the UNOIDL declaration. The return type and argument
types correspond to the mapping of the respective UNOIDL types. The order of the arguments is
the same as in the UNOIDL declaration.

Types declared in a CLI language, do not need to provide argument names in methods. Only their
types are required. If names are provided, then this is done for all arguments.

Exceptions, which are expressed by the raised keyword in UNOIDL, have no bearing on the target
type. The IL assembler method head does not reflect the exception. However, metadata, which
holds information about possible UNO exceptions, is available.

Parameter Types (in,out,in/out)

The CLI supports three kinds of parameter types: by-ref parameters, by-value parameters and
typed-reference parameters. Typed-reference parameters are very special types and are of no rele-
vance to this specification (for more information, see class System. TypedReference). Within the
CLR, objects are always passed as references. However, only objects that have a by-ref type, which
is indicated by the trailing '&' in the type name, can be assigned a new value. Therefore, by-ref
parameters can be used as in/out or just out parameters.

Parameters can have an in-attribute, out-attribute (CLI: InAttribute, OutAttribute) or both. They
are generated in different ways:

= By using language-specific key words, such as out in C#, which produces an OutAttribute

= By using attribute classes, such as System.Runtime.InteropServices.InAttribute and
System.Runtime.InteropServices.OutAttribute

= By explicitly defining parameters during dynamic code creation with the
System.Reflection.Emit framework (see method
System.Reflection.Emit.MethodBuilder.DefineParameter)

Parameter types are mapped as follows:

201

UNOIDL keyword CIL parameter passing conven -

tion
[in] by-value
[out] by-ref
[inout] by-ref

CIL Custom Attributes

InAttribute
OutAttribute
InAttribute, OutAttribute

In metadata a "by-value"type is represented by a CLI build-in type or class name. A "byref'type
additionally has an '&' appended. The InAttribute is represented by "[in]'and the OutAttribute by
'Tout]".If both attributes are applied, then a combination of both markers appears in the metadata.
For example:

.method public hidebysig newslot virtual abstract
instance intl6 funcl([in] intl6 'value') cil managed
{

}

.method public hidebysig newslot virtual abstract
instance intl6 func2([out] intl6& 'value') cil managed
{

}

.method public hidebysig newslot virtual abstract

instance intl6 func3([out] [in] intl6& 'value') cil managed
{

}

It depends on the language, what ways of parameter passings are supported. The language may
also require a special syntax with dedicated keywords to mark a parameter to use a particular
parameter passing convention. Therefore a general example cannot be provided. However, here
are examples in C# and C++:

//UNOIDL

void fool([in] short value);
void foo2 ([out] short value);
void foo3([inout] short value);

// C#

void fool(short wvalue);
void foo2(out short value);
void foo3(ref short value);

// C++ .NET

void foo(short value);

void foo2(short *value);

void foo3(short *value);

When one uses UNO types in a language that does not support the different parameter passings,
then that language might not be suitable for programming UNO code. For example, JScript .NET

does not support out parameters. Therefore it is inappropriate for most UNO applications.

A word about in-parameters. An UNOIDL in-parameter may not be changed from within the
method. This could be expressed in C++ with a const modifier. For example:

//C++ .NET

void foo (const Foo& value);

The const modifier, however, is not supported by the CLI and has only a meaning in code written
with the same language. For example, the C++ compiler creates an attribute, that will be evaluated
by the same compiler but it is not guaranteed that other compilers make use of this attribute. For
example:

//C++ .NET
void func(const Foo* a);

// IL asm
.method public hidebysig newslot virtual abstract instance void func(class Foo
modopt ([Microsoft.VisualC]Microsoft.VisualC.IsConstModifier) a) cil managed

202 OpenOffice.org 2.0 Developer's Guide » May 2005

Since the C# compiler does not evaluate the IsConstModifier attribute, the argument could be
modified in a C# implementation of that function.

A compiler could evaluate the InAttribute and prevent that the argument is changed. Since that is
not required, in-parameters could be modified dependent on the language being used. Therefore,
every developer must follow the rule:

UNOIDL in-parameter may not be modified from within a method, even if allowed by the language.

Exceptions

CLI methods are not particularly marked if they throw exceptions. In ordner to not loose the infor-
mation what exceptions can be thrown by a UNO interface method a custom attribute may be
applied to that method. All exceptions which are indicated by the keyword raises in a UNOIDL
interface description are mapped to a custom attribute, named uno.ExceptionAttribute..One
only need to use this attribute when one declares a new type in a CLI language. Otherwise it is
only for informational purposes. The climaker tool from the cli language binding provides assem-
blies in which methods which throw exceptions (other than
com.sun.star.uno.RuntimeException)are tagged with this Attribute. If the attribute is not
present a method can still throw a RuntimeException or any other exception which is
derives from it..

One-Way Methods

The UNOIDL oneway attribute has no counterpart in the CLI. To retain this information, the
custom attribute uno.OnewayAttribute is applied.

Attributes

The UNOIDL attribute type is mapped to a CTS property. The type of the property is the mapping
of the type used in the attribute declaration in UNOIDL.

A UNOIDL readonly attribute is mapped to a read-only property. That is, the property only has a
get method.

UNOIDL method attributes can throw exceptions. These are expressed by the custom attribute
uno.ExceptionAttribute which shall be applied to the get and/or set method. It shall only be
applied if an exception is specified in UNOIDL.

Xlnterface

The CLI language binding does not support com.sun.star.uno.XInterface. Wherever a XlInterface
occurs in a UNOIDL method signature, the method in the mapping contains a System.Object.

XlInterface is used to control the lifetime of UNO objects. Since the CLR uses a garbage collection
mechanism, similar to Java and Smalltalk, there is no need for an explicit control of an object's life-
time.

203

Xlnterface also provides a means to obtain other implemented interfaces by calling queryInterface.
In CLI, code this is done by casting an object to the desired interface. If the object does not imple-
ment this interface, then a System.InvalidCastException is thrown.

For the previously stated reasons, the XInterface adds no functionality to an implementation.
Therefore, no mapping for this interface exists.

Struct

A UNO IDL struct is mapped to CTS class type, which supports inheritance (that is, no sealed attri-
bute in the class head). A struct, such as defined by the C# struct keyword, is a value type and
therefore has no inheritance support. For example:

//C#

public struct Foo
{

}

IL class header:

.class public sequential ansi sealed beforefieldinit Foo

extends [mscorlib]System.ValueType

{

}

Also, the class inherits System.Object if the UNO struct has no base struct. Otherwise the target
class inherits the class that is the mapping of the respective UNO base struct. Members of a UN-
OIDL struct are mapped to their respective target types. All members of the target type have

public accessibility.

For ease of use, the target has two constructors: one default constructor without arguments and
one that completely initializes the struct. The order of the arguments to the second constructor
corresponds to the position of the members in the respective UNOIDL description. That is, the first
argument initializes the member that is the mapping of the first member of the UNOIDL descrip-
tion. The names of the arguments are the same as the members that they initialize. Both construc-
tors initialize their base class appropriately by calling a constructor of the base class. In some lan-
guages, instance constructor initializers are implicitly provided. For example, in C# base() does not
need to be called in the initializer.

If a struct inherits another struct, the order of the arguments in a constructor is as follows: the
arguments for the struct at the root come first, followed by the arguments for the deriving struct,
and so on. The order of the arguments that initialize members of the same struct depends again on
the position of the respective members within the UNOIDL declaration. The argument for the first
member appears first, followed by the argument for the second member, and so on. The con-
structor calls the constructor of the inherited class and passes the respective arguments.

//UNOIDL
struct FooBase
{

string s;

}i

struct Foo: FooBase
{

long 1;

}i

// C#

public class FooBase

{

public FooBase () // base() implicitly called
{

}

public FooBase (string s) // base() implicitly
{
this.s = s;

}

public string s;

204 OpenOffice.org 2.0 Developer's Guide » May 2005

}

public class Foo: FooBase
{

public Foo ()

{

}

public Foo(string s, int 1): base(s)

this.l = 1;

public int 1;

Polymorphic structs

As of OpenOffice.org2.0, there is a new UNO IDL feature, the polymorphic struct. This struct is
similar to C++ templates, in that the struct is parameterized and members can use the parameters
as types. For example:

//UNO IDL
struct PolyStruct<T>
{

T member;

}i

//C#

public class PolyStruct

{
public PolyStruct() // base() implicitly called
{
}

public PolyStruct (object theMember)
{
member = theMember;

}

public object member;
}
As one can see, the type that is provided by the parameter is a System.Object. When instantiating a
polymorphic struct, one need not initialize the members that are Objects. They can be null.

const

If a UNOIDL const value is contained in a module rather then a constants group, then a class is
generated with the name of the const value. The only member is the constant. For example:

// UNO IDL

module com { sun { star { foo ({
const long bar = 111;

IR IS ¥

// C# representation of the mapping
namespace unoidl.com.sun.star.foo

{

public class bar

{

public const int bar = 111;
}

}

In contrast to the Java mapping, interfaces are not used, because interfaces with fields are not CLS
compliant.

constants

A constants type is mapped to a class with the same name as the constants group. The namespace
of the class reflects the UNOIDL module containing the constants type. For example:

205

206

//UNOIDL

module com { sun { star { foo {
constants bar
{

const long a
const long b
}i
i
// C# representation

namespace unoidl.com.sun.star.foo
{

public class bar

{

public const long a
public const long b
}

}

1;
2;

N =

enum

UNOIDL enumeration types map to a CTS enumeration. The target type must inherit
System.Enum and have the attribute sealed. For example:

//UNOIDL
enum Color
{

green,

red

}i
//C#

public enum Color
{

green,

red

}

sequence

A UNOIDL sequence maps to a CTS array. The target type may only contain CLS types, which is
always the case since this mapping specification only uses CLS types. The target array has exactly
one dimension. Therefore a sequence that contains a sequence is mapped to an array that contains
arrays. Those arrays are also called 'jagged arrays".For example:

//UNOIDL
sequence<long> ar32;
sequence<sequence<long>> arar32;

//C#
int ar32;
int[] [] arar32;

exception

The com.sun.star.uno.Exception is mapped to an exception that uses the same namespace and
name. All members have public accessibility. The target unoidl.com.sun.star.uno.Exception
inherits System.Exception and has one member only, which represents the Context member of
the UNOIDL Exception. The target type does not have a member that represents the Message
member of the UNOIDL type. Instead, it uses the Message property of System.Object.

For ease of use the target has two constructors: one default constructor without arguments and one
that completely initializes the exception. The order of the arguments to the second constructor cor-
responds to the position of the members in the respective UNOIDL description. That is, the first
argument initializes the member, which is the mapping of the first member of the UNOIDL
description. The names of the arguments are the same as the members, which they initialize. Both
constructors initialize their base class appropriately by calling a constructor of the base class. For
example:

//UNOIDL

module com { sun { star { uno {
exception Exception

{

OpenOffice.org 2.0 Developer's Guide « May 2005

string Message;

com: :sun: :star::uno: :XInterface Context;
bi

Yioobio i obi

//C#

namespace unoidl.com.sun.star.uno

{

public class Exception: System.Exception
{

public System.Object Context;

public Exception(): base()

{

}

public Exception(string Message, System.Object Context): base (Message)
{

this.Context = Context;

}

}

}

All UNO exceptions inherit com.sun.star.uno.Exception. Likewise their mappings also inherit from
the unoidl.com.sun.star.uno.Exception. The order of the constructor's arguments then
depends on the inheritance chain. The arguments for the initialization of
unoidl.com.sun.star.uno.Exception come first followed by the arguments for the derived
exception and so on. The order of the arguments, which initialize the members of the same excep-
tion, depends again from the position of the respective members within the UNOIDL declaration.
The argument for the first member appears first, followed by the argument for the second member,
and so on. The constructor calls the constructor of the inherited class and passes the respective
arguments. For example, let us assume we have a exception FooException which has two mem-
bers:
//UNOIDL
module com { sun { star { uno {
exception FooException: com::sun::star::uno::Exception
{ int valuel;

string value2;
% Yiobiobs

//C#
namespace com.sun.star.uno
{
public class FooException: com.sun.star.uno.Exception
{
public int valuel;
public string value2;

public FooException (): base ()

{

}

public FooException (string argMessage,
System.Object Context, int valuel,
string value2): base (Message, Context)

this.valuel = valuel;
this.value2 = value2;

services

For every single-interface-based service a CLI class is provided which enables typesafe instantia-
tion of the service. For example, if there were a service com.sun.star.Test then it could be created in

these two way
//C#
// com.sun.star.Test implements interface XTest

com.sun.star.uno.XComponentContext xContext = ...;

object service=

xContext.getServiceManager () .createInstanceWithContext (
"com.sun.star.Test", xContext);
XTest x = (XTest) service;

207

208

// This is the new way
XTest y = com.sun.star.Test.create (xContext) ;

If a service constructor method is specified to throw exceptions, then the respective CLI method
hat the custom attribute uno.ExceptionAttribute applied to it.

See chapter Services/Service Constructors under 3.2.1 Professional UNO - API Concepts - Data
Types for further details.

singletons

Similar to the services there are CLI classes for new-style singletons. For example, if there were a
singleton com.sun.star.TestSingleton then it could be created in these two ways:

//CH

com.sun.star.uno.XComponentContext xContext = ...;

uno.Any a = xContext.getValueByName (“com.sun.star.TestSingleton”) ;

XTest x = (XTest) a.Value;

//The alternative:
XTest x = com.sun.star.TestSingleton.get (xContext) ;

Additional Structures

Whether a complete type mapping can be achieved depends on the capabilities of a target environ-
ment. UNOIDL attributes which have no counterpart in the CLI are mapped to custom attributes.
Hence no information becomes lost in the mapping. The attributes can be evaluated by:

» The CLI - UNO bridge
» Tools that generated source code files or documentation

= Tools that use CLI assemblies to dynamically provide type information to UNO.

ExceptionAttribute Attribute

The uno.ExceptionAttribute can be applied to interface methods, property methods (get or set) or
service constructor methods. It contains the information about what exceptions can be thrown by
the method. The source code can be found at
cli_ure/source/basetypes/uno/ExceptionAttribute.cs.

OnewayAttribute

The uno.OnewayAttribute is applied to those interface methods that UNOIDL declarations have
tapplied he oneway attribute to. The source code can be found at
cli_ure/source/basetypes/uno/OnewayAttribute.cs.

OpenOffice.org 2.0 Developer's Guide « May 2005

BoundPropertyAttribute

The uno.BoundPropertyAttribute is applied to properties whose respective UNOIDL declara-
tions have the bount attibute applied to it. The source code can be found at cli ure/source/base -
types/uno/BoundPropertyAttribute.cs.

TypeParametersAttribute

The uno.TypeParametersAttribute is applied to polymorphic structs. It keeps the information of
the names in the type list of the struct. For example, a struct may be named com.sun.star.Foo<T,
C>. Then the attribute containes the information, that the name of the first type in the type list is
“T” and the second is “C”.

This attribute will become obsolete when the CLI supports templates and the CLI-UNO language
binding has adopted them. The source code can be found at
cli_ure/source/basetypes/uno/TypeParametersAttribute.cs.

ParameterizedTypeAttribute

The uno.ParameterizedTypeAttribute is applied to fields of polymorphic structs whose type is
specified in the type list. For example, the struct may be declared as com.sun.star.Foo<T,C> and
member is of type “T”. The member of the CLI struct would then be of type System.Object and the
applied ParameterizeTypeAttribute would declare that the actual type is “T”.

This attribute will become obsolete when the CLI supports templates and the CLI-UNO language
binding has adopted them. The source code can be found at
cli ure/source/basetypes/uno/ParameterizedTypeAttribute.cs.

TypeArgumentsAttribute

The uno.TypeArgumentsAttribute is applied to instantiations of the polymorphic struct. That is,
it appears when a polymorphic struct is used as return value, parameter or field. It contains the
information about the actual types in the type list. For example, a function has a parameter of type
com.sun.star.StructFoo<char, long>. Then the CLI parameter has the attribute which contains
the list of types, in this case System.Char and System.Int32.

This attribute will become obsolete when the CLI supports templates and the CLI-UNO language
binding has adopted them. The source code can be found at
cli ure/source/basetypes/uno/TypeArgumentsAttribute.cs.

PolymorphicType

The uno.PolymorphicType is derived from System.Type. It is used whenever a type from a poly-
morphic struct is needed. For example:

//UNOIDL

void funcl([in] type t);

void func2([in]any a);
)i

(
(
type func3(
any func4 ()

If the caller intends to pass the type of an polymorphic struct in funcl, then they cannot use ty-
peof(structname). Instead a uno.PolymorphicType must be created. The same goes for func2,

when the any contains a polymorphic struct. If a UNO method returns the type of polymorphic
struct, then the bridge ensures that a PolymorphicType is returned rather than System.Type.

209

210

The PolymorphicType is constructed by a static function:

public static PolymorphicType GetType (Type type, string name)
The function ensures that there exist only one instance for the given combination of type and name.

This attribute will become obsolete when the CLI supports templates and the CLI-UNO language
binding has adopted them. The source code can be found at
cli_ ure/source/basetypes/uno/PolymorphicType.cs.

Lifetime Management and Obtaining Interfaces

The CLR is similar to the Java runtime in that it keeps track of the object's lifetime rather then
leaving the task to the developer. Once an object is no longer referenced (unreachable), the CLR
deletes that object. Therefore, reference counting, as used in C++, is not necessary. Hence
com.sun.star.uno.XInterface:acquire and com.sun.star.uno.XInterface:release are not needed.

Xlnterface has a third method, querylInterface, which is used to query an object for a particular
interface. This language binding does not use queryInterface. Instead objects can be cast to the
desired interface. For example:

// C#
try {
XFoo bar = (XFoo) obj;
} catch (System.InvalidCastException e) {
// obj does not support XFoo
}

// using keywords is and as
if (obj is XFoo) {

// obj supports XFoo
}

XFoo foo = obj as XFoo;
if (foo != null)
{

// obj supports XFoo
}

// C++ with managed extensions
XFoo * pFoo = dynamic cast< XFoo * >(obj);
if (XFoo != 0)
{
// obj supports XFoo
}

try {

XFoo * pFoo = try cast< XFoo * >(obj);

} catch (System::InvalidCastException * e) {
// obj does not support XFoo

}

Writing Client Programs

To build a client program it must reference at least c1i_types.dll and cli_ cppuhelper.dll.
Also c1i ure can be referenced when one of its classes is used. These libraries are installed in the
GAC and the program folder of the office installation. The referencing is done by certain compiler
switches, for example /Al for C++ (with managed extensions) or /reference for the C# compiler.
C++ also requires dlls to be specified by the using the #using:

#using <mscorlib.dll>
#using <cli types.dll>
The following example discusses how to use services provided by a running office process:

The starting point of every remote client program is a component context. It is created by a static
function defaultBootstrap InitialComponentContext, which is provided by the class

OpenOffice.org 2.0 Developer's Guide « May 2005

uno.util.Bootstrap. The context provides the service manager by which UNO components can
be created. However, these components would still be local to the client process, that is, they are
not from a running office and therefore cannot affect the running office. What is actually needed is
a service manager of a running office. To achieve that, the component
com.sun.star.bridge.UnoUrlResolver is used, which is provided by the local service manager. The
UnoUrlResolver connects to the remote office and creates a proxy of the office's service manager in
the client process. The example code is as follows:

//C# example
System.Collections.Hashtable ht = new System.Collections.Hashtable();
ht.Add ("SYSBINDIR", "file:///<office-dir>/progran;
unoidl.com.sun.star.uno.XComponentContext xLocalContext =
uno.util.Bootstrap.defaultBootstrap InitialComponentContext (
"file:///<of fice-dir>/program uno.ini", ht.GetEnumerator());

unoidl.com.sun.star.bridge.XUnoUrlResolver xURLResolver =
(unoidl.com.sun.star.bridge.XUnoUrlResolver)
xLocalContext.getServiceManager () .
createInstanceWithContext ("com.sun.star.bridge.UnoUrlResolver",
xLocalContext) ;

unoidl.com.sun.star.uno.XComponentContext xRemoteContext =
(unoidl.com.sun.star.uno.XComponentContext) xURLResolver.resolve (
Yino:socket,host=localhost,port=2002;urp; StarOffice.ComponentContext") ;

unoidl.com.sun.star.lang.XMultiServiceFactory xRemoteFactory =
(unoidl.com.sun.star.lang.XMultiServiceFactory)
xRemoteContext.getServiceManager () ;

With the factory of the running office at hand, all components of the remote office are accesible.

For a client to connect to a running office, the office must have been started with the proper param -
eters. In this case, the command line looks like this:

soffice -accept=socket,host=localhost,port=2002;urp;

More information about interprocess communication can be found in the Developer's Guide, in
chapter 3.3.1 Professional UNO - UNO Concepts - UNO Interprocess Connections.

The example shows a scenario where an office is controlled remotely. It is, however, possible to
write UNO applications that do not depend on a running office. Then, you would typically pro-
vide an own database of registered services. For more information, see 4.9.5 Writing UNO Compo-
nents - Deployment Options for Components - Manual Component Installation.

There is an overloaded function uno.util.Bootstrap.defaultBootstrap InitialComponentContext,
which does not take arguments. It is intended to always connect to the most recently installed of-
fice. It is even capable of starting the office. To do that, the function needs to know where the office
is located. This information is obtained from the windows registry. During installation either the
key HKEY CURRENT USER\Software\OpenOffice.org\UNO\InstallPath or

HKEY LOCAL MACHINE\Software\OpenOffice.org\UNO\InstallPath is written dependent on
whether the user chooses a user installation or an installation for all users. The function uses the
key in HKEY CURRENT USER first, and if it does not exists it uses the key in HKEY LOCAL MACHINE.
In case the office does not start, check these keys. Also make sure that the PATH environment vari-
able does not contain the program path to a different office.Implementing UNO Interfaces

The CLI-UNO language binding does not support UNO components that are written in a CLI lan-
guage. Instead, it acts as a liaison between a CLI client program and an office. The client program
usually obtains UNO objects from the office and performs operations on them. Therefore, it is
rarely necessary to implement UNO interfaces.

To receive notifications from UNO objects, then, it is necessary to implement the proper interfaces.
Also, interfaces can be implemented in order to use the objects as arguments to UNO methods.

Interfaces are implemented by declaring a class that derives from one or more interfaces, and
which provides implementations for the interface methods. How this is done is covered by the
respective documentation of the various CLI languages.

211

2

212

The Override Problem

The term “override problem” describes a problem that occurs when a virtual function of a base
object becomes unreachable because an interface method overrides the implementation of the base
class. For example, all CLI objects derive from System.Object. If an interface has a method that
has the same signature as one of System.Object's methods, then the respective method of
System.Object is unreachable if the interface method is virtual.

For example, consider the following declaration of the interface XxFoo and