
Generated by Jive SBS on 2010-03-25-04:00
1

JBossESBjBPMIntegration

JBossESB - jBPM Integration
-

This page contains both requirements and design examples about the way of integration.

1. ESB to jBPM

The integration layer uses the jBPM Command API, and it provides action for the following
jBPM commands:

• DeployProcessDefinition - Deploy a Process Instance to jBPM. In reality one
would most likely use the IDE, and the QuickStarts offer the deployment by sending
a message to action command. For details on native jBPM options to deploy a
process archive see the jBPM documentation. We need to document the pros and
cons about deploying classes along with the Process Instance definition to avoid
class loading issues.

• NewProcessInstanceCommand - Start a new ProcessInstance given a process
definition that was already

 deployed to jBPM. The NewProcessInstanceCommand leaves the
Process Instance in the start state, which would be needed if there is an task associated to
the Start node (i.e. some task on some actor's tasklist). In most cases however you would
like the new Process Instance to move to the first node, which is where the next command
comes in.

• StartProcessInstanceCommand - Identical to the NewProcessInstanceCommand,
but additionally the new Process Instance is moved from the Start position into the
first Node.

http://community.jboss.org/docs/DOC-11184
http://docs.jboss.com/jbpm/v3/userguide/jpdl.html

JBossESBjBPMIntegration

Generated by Jive SBS on 2010-03-25-04:00
2

• CancelProcessInstanceCommand - Cancel a ProcessInstance. i.e. when an event
comes in which should result in the cancellation of the entire ProcessInstance. This
action requires some jBPM context variables to be set on the message, in particular
the ProcessInstance Id. Details on that are discussed later.

• GetProcessInstanceVariablesCommand - Retrieve variables from the specified process instance.

The actions should be asynchronous in the sense that they do not return information to the

caller and that any jBPM processing should occur in a different context. This means

that these actions return a 'null' message, and terminate the action pipeline.

2. jBPM to ESB

Right now the communication from jBPM to ESB (EsbActionHandler) can be synchronous or
asynchronous. I synchronous invocation of the Service Invoker is used when a timout value
is specified in the process definition.

The synchronous call opens up generic issues synchronous calls have in the ESB right
now, such as problems with transactions across boundaries, reliable delivery etc. More
specifically in jBPM, we leave ourselves open to issues around recursion - if the Node is
blocked in the EsbActionHandler and another request comes into this Node.

We want to replace the synchronous call with a 'async - callback' one that would NOT
change the existing configuration.

2.1 Recipe for one-way call (EsbNotifier)

The BPM designer attaches the EsbNotifier to the Transition or an event, rather then
the Node. The jBPM processing can move along while the request to the ESB service is

JBossESBjBPMIntegration

Generated by Jive SBS on 2010-03-25-04:00
3

processed in the background. In the process-deployment.xml,the designer specifies the
Service category and name, and adds variable mapping from jBPM to ESB.

2.2 Recipe for a two-way call (async-callback EsbActionHandler)

The BPM designer creates a node attaches the EsbActionHandler to the Node. The

designer specifies the Service category and name, and the variable mappings for both ways.
Since the EsbActionHandler is attached to the Node, jBPM processing does not transition to
the next Node. The Node is waiting for a signal, which will come from the ESB callback (or
from somewhere else, and then the callback call should fail).

2.3 Recipe for a two-way call (async-callback, EsbActionHandler) with

timeout

Same as 2.2, but additionally the designer needs to add a Timer to the Node and sets the
DueDate. The DueDate is a timeout which can be set to something like t + 5s. Optionally the
designer can add a timeout transition, to process things differently when a timeout occurs. If
an old 'millisToWaitForResponse' is specified we should log a warning that this is no longer
supported.

2.4 Design of the async - callback

Both 2.2 and 2.3 use the asyc-callback mechanism which is hidden from the user. The
following section fleshes out how this should work.

http://docs.jboss.com/jbpm/v3/userguide/scheduler.html#timers

JBossESBjBPMIntegration

Generated by Jive SBS on 2010-03-25-04:00
4

2.4.1 jBPM -> ESB (EsbActionHandler)
• Create or increment a process version counter whose name is related

 to the current node ID. The counter should be added to the ProcessVariable Map (global
to the ProcessInstance) on the jBPM side. The name of the counter should be something
like

-ESBInvokationCounter. The same variable should be added to the EsbMessage before it is
passed onto the ESB.

• Include process version counter version, nodeId and tokenId in the EsbMessage's
ReplyTo LogicalEPR (Service Category and Name) for the generic CallBack service.
If there is an original ReplyTo, store that somewhere else in the message.

• Send async message into ESB, ReplyTo set to EPR from previous step.

2.4.2 ESB -> jBPM generic service 'jBPMCallback'
• Extract node id and version from EPR
• Verify that the version is still the same and that the process is still at that node. If

either of these conditions are not met, a warning should be logged.
• Update variables and signal.

3. Exception Handling

3.1 ESB -> jBPM

When the ESB calls into jBPM a jBPMException can be thrown in from the jBPM Command
API. This exception is not handled by the integration

we let is propagate into the ESB Action Pipeline code.

JBossESBjBPMIntegration

Generated by Jive SBS on 2010-03-25-04:00
5

3.2 jBPM -> ESB
• When jBPM calls into ESB, the ServiceInvoker can throw a

MessageDeliveryException. In the jBPM node one can add an ExceptionHandler to
handle this exception.

When the EsbActionHandler is used and the node is waiting for a Callback we can set

• a timer element on the node, so that a timeout transition is taken when timeout
occurs. This is an example of a timer that fires after 1 second, after which is takes
the 'time-out-transition'.

 <node name="Service1">
 <action class="org.jboss.soa.esb.services.jbpm.actionhandlers.EsbActionHandler">
 <esbCategoryName>MockCategory</esbCategoryName>
 <esbServiceName>MockService</esbServiceName>
 </action>
 <timer name='timeout' duedate='1 seconds' transition='time-out-transition'></timer>
 <transition name="ok" to="Service2"></transition>
 <transition name="time-out-transition" to="ExceptionHandling"></transition>
 </node>

• set an exceptionTransition. The exceptionTransition is used to build the faultToEPR
on the ESB message. So if anything goes wrong during processing on the ESB
side the faultToEPR will be used, which will use the same CallbackService
described above, but the callback will signal the transition referenced in the
exceptionTransition. This is an example of setting the exceptionTransition to
'exception'

 <node name="Service2">
 <action class="org.jboss.soa.esb.services.jbpm.actionhandlers.EsbActionHandler">
 <esbCategoryName>MockCategory</esbCategoryName>
 <esbServiceName>MockService</esbServiceName>
 <exceptionTransition>exception</exceptionTransition>
 </action>
 <transition name="ok" to="Service3"></transition>
 <transition name="exception" to="ExceptionHandling"></transition>
 </node>

• set a variable such an error code in the jBPM context and add a jBPM decision
element which can pick a conditional exception transition. An example of this would
be

 <node name="Service3">
 <action class="org.jboss.soa.esb.services.jbpm.actionhandlers.EsbActionHandler">
 <esbCategoryName>MockCategory</esbCategoryName>
 <esbServiceName>MockService</esbServiceName>
 <esbToBpmVars>
 <mapping esb="SomeExceptionCode" bpm="errorCode"></mapping>
 </esbToBpmVars>

http://docs.jboss.com/jbpm/v3/userguide/processmodelling.html

JBossESBjBPMIntegration

Generated by Jive SBS on 2010-03-25-04:00
6

 </action>
 <transition name="ok" to="exceptionDecision"></transition>

 </node>

 <decision name="exceptionDecision">
 <transition name="ok" to="end"></transition>
 <transition name="exceptionCondition" to="ExceptionHandling">
 <condition>#{ errorCode!=void }</condition>
 </transition>
 </decision>

The last three scenarios are depicted in the following diagram

Figure 1. ExceptionHandling Flows.

Resources

• A German Java Magazin article and the English showcase description about the
jBPM and ESB integration can be found here: jbpm meets esb

http://wiki.jboss.org/wiki/attach?page=JBossESBjBPMIntegration%2FexceptionHandling.png
http://www.camunda.com/knowledge/jbpm_meets_esb.html

