SSL Certificates HOWTO

Franck Martin

Revision History

Revision v0.3 2002-05-09 Revised by: FM
Adding x509v3 extension information — Correcting spelling

Revision v0.2 2001-12-06 Revised by: FM
Adding openssl.cnf file — Adding CRL info from Averroes— Correcting spelling
Revision v0.1 2001-11-18 Revised by: FM

Creation of the HOWTO

A first hand approach on how to manage a certificate authority (CA), and issue or sign certificates to be use
for secure web, secure e—mail, or signing code and other usages.

SSL Certificates HOWTO

Table of Contents

(O T o) =Y B CT=T 1= = 11T PRSPPI i
00 I oY [o o o T .
1.1.1.DiSClAIMEIANALICENCE.ceueeieeeeeie e e ettt e e e e e e e et e e e st e e e s eebeeeseebanas 1
1.1.2. Prior KNOWIEAGE. .. uveeiiiiiiiiiiiiieeitee ettt e e e e et e et e e et eaaaaaaaaaaaaaaaeans 1
1.2.Whatis SSLandwhatar€ CertifiCAtES?.......uuiiiiiii e e e e e e e 2
O I V7= 1= SN Y7 U o) [T S PP 2
R N A TSX O Y 4 1 107= L (< 2
1.2.3. ThE SYMIMIEIIICKEY .ottt e s s s s s s s s s s s s s s s s s e s s snnsseeeseeeeees 3
1.2.4. Encryptionalgorithms...........ooooiiiii i 3
S T I AT = T 3
TS 1o 12T PP P RS PUSUURPRP 3
A = 13 oY nd 4T 7= 1= =T 4
1.3.WhataboutS/MIime or OtherProtOCOIS?.uuuuuiiiriiieiiiiirieeieereereeeseeeeseeeeeeeeeeeeeeeeerereereerreeereeeeeeaeeess 4
Chapter 2. Certificate ManNAQEMENL..........cviiiiiiiiiiiiiieieeee ettt e aaaaaaaaens 5
2 I (153 7= | = 0 .
2. 0.0 . THE CA PLULIIEY. vvvvvvririiieeiieetiee ettt e e e e e e e e e et eaaaeaaaaaaaaaaaaaaaaaaaaens 5
2.1.2.TheOPENSSLCNFIlE.....ciiiiiiiiiiiieeeeeeeee L 5
2.1.3.Createthe CertificatioNAULNOIILY.covvviviieiiiiiiiee 10
2.2.Createa Root CertificationAuthority Certificate...........ovvviviviiiiiiii 10
2.3.Createanonroot CertificationAuthority Certificate..........coovvvivviiiiiiiiiii 11
2.4.Install the CA root certificateasa TrustedROOt CertifiCate..........ocevvniieiiiieieiiiiee e 11
A I T AN 1] £ o= T o = O 11
Ay L N T =Yoo T 12
A T 4 1 1o = - PP 12
2.4.4.10 INEEINEIEXPIOTEY.....ciiiieiiiee e, 12
2.5.CertificatemManagEMENT.........ccviiiiiieiiieeeeee e 12
2.5.1.GeneratandSigna certificatereqUESst...........c.covvviiiiiiiiiiie 12
2.5.2. REVOKEA CEITITICALE.uvu i iiieii et e e e e e e e e e e e e et e e e e aaaaaes 13
2.5.3. RENEWA CEIITICAIE iiieeei ettt et e e e e e e e e e e e s et e e s s et e e e eeeaaeeeees 13
2.5.4.Displaya CertifiCate............cooe i ——— 13
oo T W A 1SX 1010 1Sy 0 [14
2.5.6.Build yourwebbasedCertificate AUtNOFItY.........ccoeeeiiiee i 14
2.6.SeCUNNGINIEINEIPIOIOCOIS. . .. vuuvtiiriiiiitiieitreeteeereeeteeeseesesesseessesssesssessessssesssesseesseeeseeseeeaeeeaeeeaeeaeeees 14
2.6.1.Usinga certificatewith mod_sslin apache................c..ccoo e, 14
2.6.2.Usinga certificateWith IMAPS.........ouiiiiiiiiiiiiiiiiie it e e e e e e e e e e e eeeeeeaeeeaeees 15
2.6.3.Usinga certificatewith POPS..........cooovviiiii 15
2.6.4.Usinga certificatewith POSHIX...........cooiieiiiiiiiie i 15
2.6.5.Usinga certificatewith STUNNEL............uuuiiiiiiiiiiiiiiiiiiieiieeieeeeeeeeeeeeee e 15
2.6.6.GenerataandSignakey with Microsoft Key Manager...........cccceccvvevvvurvneninniinninnninnn. 15
2.7.SECUNNGE=IMAIIS... ... i 16
2.7.1.Generateindusean S/MIMECEILIfICALE.uviiiiivei e eeas 16
2.7.2.To usethis certificatewith MS OUHIOOK.ooivuvniiiiiiee e 16
2.7.3.To usethis certificatewith MS OUtIOOKEXDPIESS.......uvvvverrieireiiieeiieeieeeeeeeeeeeeeeeeeeeeeeeeeas 17
2.7.4.To usethis certificatewith NetSCap@MESSENUEL.........uvvrrvrrrrriirerirerreerreereererereeeereeeeees 17
2.7.5.To usethis certificatewith EVOIULION.ooiivuuiiiiiiieeee e e e 17
2.7.6.To usethis certificateWith BAISaL............uuuiiiiiiiiiiiiee e e e 17
2.7.7.To usethis certifcateWith KIMAIL.coiiieuniiiiiie et e e e e e e e 17

SSL Certificates HOWTO

Table of Contents

A TS Y=L o] |10 0o [PSPPSR 17
R < T MY, [ToTa =T 1 O Yo [T 17

Chapter 1. Generalities

1.1. Introduction

Dear reader, like myself, you have intensively read the man pages of the applications of the OpenSSL proje
and like myself, you couldn't figure out where to start, and how to work securely with certificates. Here is the
answer to most of your questions.

This HOWTO will also deal with non-linux applications: there is no use to issue certificates if you can't use
them... All applications won't be listed here, but please, send me additional paragraphs and corrections. | ca
be reached at the following address:franck@sopac.org.

1.1.1. Disclaimer and Licence

This document is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY: ; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

In short, if the advises given here break the security of your e—commerce application, then tough luck- it's
never our fault. Sorry.

Copyright (c) 2001 by Franck Martin and others from the openssl—-users mailing list under GFDL (the
GNU Free Documentation License).

Please freely copy and distribute (sell or give away) this document in any format. It's requested that
corrections and/or comments be forwarded to the document maintainer. You may create a derivative work
and distribute it provided that you:

1. Send your derivative work (in the most suitable format such as sgml) to the LDP (Linux
Documentation Project) or the like for posting on the Internet. If not the LDP, then let the LDP know
where it is available.

2. License the derivative work with this same license or use GPL. Include a copyright notice and at leas
a pointer to the license used.

3. Give due credit to previous authors and major contributors. If you're considering making a derived
work other than a translation, it's requested that you discuss your plans with the current maintainer.

It is also requested that if you publish this HOWTO in hardcopy that you send the authors some samples for
‘review purposes' :-). You may also want to send something to cook my noodles ;-)

1.1.2. Prior knowledge

As indicated in the introduction, this documents is an hand—on HOWTO, and it is therefore required that yoL
consult the man pages of the OpenSSL software. You should as well read security books to learn how your
security could be compromised. Certificates are meant to increase the security of your transactions, it is
VERY important that you understand all the security implications of your actions and what security
OpenSSL does not provide.

Chapter 1. Generalities 1

http://www.openssl.org/
mailto: franck@sopac.org
http://www.gnu.org/

SSL Certificates HOWTO

1.2. What is SSL and what are Certificates?

The Secure Socket Layer protocol was created by Netscape to ensure secure transactions between web
servers and browsers. The protocol uses a third party, a Certificate Authority (CA), to identify one end or
both end of the transactions. This is in short how it works.

1. A browser requests a secure page (usually https://).

2. The web server sends its public key with its certificate.

3. The browser checks that the certificate was issued by a trusted party (usually a trusted root CA), tha
the certificate is still valid and that the certificate is related to the site contacted.

4. The browser then uses the public key, to encrypt a random symmetric encryption key and sends it to
the server with the encrypted URL required as well as other encrypted http data.

5. The web server decrypts the symmetric encryption key using its private key and uses the symmetric
key to decrypt the URL and http data.

6. The web server sends back the requested html document and http data encrypted with the symmetri
key.

7. The browser decrypts the http data and html document using the symmetric key and displays the
information.

Several concepts have to be understood here.

1.2.1. Private Key/Public Key:

The encryption using a private key/public key pair ensures that the data can be encrypted by one key but ca
only be decrypted by the other key pair. This is sometime hard to understand, but believe me it works. The
keys are similar in nature and can be used alternatively: what one key emcrypts, the other key pair can
decrypt. The key pair is based on prime numbers and their length in terms of bits ensures the difficulty of
being able to decrypt the message without the key pairs. The trick in a key pair is to keep one key secret (th
private key) and to distribute the other key (the public key) to everybody. Anybody can send you an
encrypted message, that only you will be able to decrypt. You are the only one to have the other key pair,
right? In the opposite , you can certify that a message is only coming from you, because you have encryptec
it with you private key, and only the associated public key will decrypt it correctly. Beware, in this case the
message is not secured you have only signed it. Everybody has the public key, remember!

One of the problem left is to know the public key of your correspondent. Usually you will ask him to send
you a non confidential signed message that will contains his publick key as well as a certificate.

1.2.2. The Certificate:

How do you know that you are dealing with the right person or rather the right web site. Well, someone has
taken great length (if they are serious) to ensure that the web site owners are who they claim to be. This
someone, you have to implicitly trust: you have his/her certificate loaded in your browser (a root Certificate).
A certificate, contains information about the owner of the certificate, like e-mail address, owner's name,
certificate usage, duration of validity, resource location or Distinguished Name (DN) which includes the
Common Name (CN) (web site address or e—-mail address depending of the usage) and the certificate ID of
the person who certifies (signs) this information. It contains also the public key and finally a hash to ensure
that the certificate has not been tampered with. As you made the choice to trust the person who signs this

1.2. What is SSL and what are Certificates? 2

SSL Certificates HOWTO

certificate, therefore you also trust this certificate. This is a certificate trust tree or certificate path. Usually
your browser or application has already loaded the root certificate of well known Certification Authorities
(CA) or root CA Certificates. The CA maintains a list of all signed certificates as well as a list of revoked
certificates. A certificate is insecure until it is signed, as only a signed certificate cannot be modified. You ca
sign a certificate using itself, it is called a self signed certificate. All root CA certificates are self signed.

1.2.3. The Symmetric key:

Well, Private Key/Public Key encryption algorithms are great, but they are not usually practical. It is
asymmetric because you need the other key pair to decrypt. You can't use the same key to encrypt and
decrypt. An algorithm using the same key to decrypt and encrypt is deemed to have a symmetric key. A
symmetric algorithm is much faster in doing its job than an asymmetric algorithm. But a symmetric key is
potentially highly insecure. If the enemy gets hold of the key then you have no more secret information. You
must therefore transmit the key to the other party without the enemy getting its hands on it. As you know,
nothing is secure on the Internet. The solution is to encapsulate the symmetric key inside a message
encrypted with an asymmetric algorithm. You have never transmitted your private key to anybody, then the
message encrypted with the public key is secure (relatively secure, nothing is certain except death and taxe
The symmetric key is also chosen randomly, so that if the symmetric secret key is discovered then the next
transaction will be totally different.

1.2.4. Encryption algorithm:

There are several encryption algorithms available, using symmetric or asymmetric methods, with keys of
various lengths. Usually, algorithms cannot be patented, if Henri Poincare had patented his algorithms, then
he would have been able to sue Albert Einstein... So algorithms cannot be patented except mainly in USA.
OpenSSL is developed in a country where algorithms cannot be patented and where encryption technology
not reserved to state agencies like military and secret services. During the negotiation between browser anc
web server, the applications will indicate to each other a list of algorithms that can be understood ranked by
order of preference. The common preferred algorithm is then chosen. OpenSSL can be compiled with or
without certain algorithms, so that it can be used in many countries where restrictions apply.

1.2.5. The Hash:

A hash is a number given by a hash function from a message. This is a one way function, it means that it is
impossible to get the original message knowing the hash. However the hash will drastically change even for
the slightest modification in the message. It is therefore extremely difficult to modify a message while
keeping its original hash. It is also called a message digest. Hash functions are used in password mechanis
in certifying that applications are original (MD5 sum), and in general in ensuring that any message has not
been tampered with. It seems that the Internet Enginering Task Force (IETF) prefers SHAL over MD5 for a
number of technical reasons (Cf RFC2459 7.1.2 and 7.1.3).

1.2.6. Signing:

Signing a message, means authentifying that you have yourself assured the authenticity of the message (m
of the time it means you are the author, but not neccesarily). The message can be a text message, or some

1.2.3. The Symmetric key: 3

SSL Certificates HOWTO

else's certificate. To sign a message, you create its hash, and then encrypt the hash with your private key, y
then add the encrypted hash and your signed certificate with the message. The recipient will recreate the
message hash, decrypts the encrypted hash using your well known public key stored in your signed
certificate, check that both hash are equals and finally check the certificate.

The other advantage of signing your messages is that you transmit your public key and certificate
automatically to all your recipients.

1.2.7. PassPhrase:

"A passprase is like a password except it is longer”. In the early days passwords on Unix system were limite
to 8 characters, so the term passphrase for longer passwords. Longer is the password harder it is to guess.
Nowadays Unix systems use MD5 hashes which have no limitation in length of the password.

1.3. What about S/Mime or other protocols?

If SSL was developed for web servers, it can be used to encrypt any protocol. Any protocol can be
encapsulated inside SSL. This is used in IMAPS, POPS, SMTPS,... These secure protocols will use a
different port than their insecure version. SSL can also be used to encrypt any transaction: there is no need
be in direct (live) contact with the recipient. S/Mime is such protocol, it encapsulates an encrypted message
inside a standard e—mail. The message is encrypted using the public key of the recipient. If you are not onlir
with the recipient then you must know its public key. Either you get it from its web site, from a repository, or
you request the recipient to e—mail you its public key and certificate (to ensure you are speaking to the right
recipient).

In a reverse order, the browser can send its own signed certificate to the web server, as a mean of
authentication. But everybody can get the browser certificate on the CA web site. Yes, but the signed
certificate has been sent encrypted with the private key, that only the public key can decrypt.

1.2.7. PassPhrase: 4

Chapter 2. Certificate Management

2.1. Installation

Nowadays, you do not have to worry too much about installing OpenSSL: most distributions use package
management applications. Refer to your distribution documentation, or read the README and INSTALL file
inside the OpenSSL tarball. | want also to avoid to make this HOWTO, an installation HOWTO rather than
an HOWTO use certificates.

| describe here some standard installation options which are necessary to know for the samples following.
Your installation may differ.

The directory for all OpenSSL certificates is /var/ssl/. All commands and paths in this document are issued
from this directory, it is not mandatory but it will help the examples.

OpenSSL by default looks for a configuration file in /ust/lib/ssl/openssl.cnf so always add —config
/etc/openssl.cnf to the commands openssl ca or openssl req for instance. | use /etc/openssl.cnf so all my
configuration files are all in /etc.

Utilities and other libraries are located in /usr/lib/ssl.

2.1.1. The CA.pl utility

Ensure that the utility CA.pl is in an accessible directory such as /usr/sbin. CA.pl can be found inside
/ust/lib/ssl directories. CA.pl is a utility that hides the complexity of the openssl command. In all the
examples, when | use CA.pl, | will also put the openssl| equivalent in brakets.

/usr/sbin/CA.pl needs to be modified to include —config /etc/openssl.cnf in ca and req calls.

#$SSLEAY_CONFIG=$ENV{"'SSLEAY_CONFIG"}
$SSLEAY_CONFIG="-config /etc/openssl.cnf";

2.1.2. The openssl.cnf file

/etc/openssl.cnf must be configured accordingly to minimize input entry.

#-——Begin———

#

OpenSSL example configuration file.

This is mostly being used for generation of certificate requests.
#

RANDFILE = $ENV::HOME/.rnd

oid_file = $ENV::HOME/.oid

oid_section = new_oids

To use this configuration file with the "—extfile" option of the

"openssl x509" utility, name here the section containing the

Chapter 2. Certificate Management 5

SSL Certificates HOWTO

X.509v3 extensions to use:

extensions =

(Alternatively, use a configuration file that has only
X.509v3 extensions in its main [= default] section.)

[new_oids]

We can add new OIDs in here for use by 'ca' and 'req'.
Add a simple OID like this:

testoid1=1.2.3.4

Or use config file substitution like this:

testoid2=%{testoid1}.5.6

R R R R R R R R R R R R
[ca]
default_ca = CA_default # The default ca section

HHAHHH R HHHH R R R HHH

[CA_default]

dir = /var/ssl # Where everything is kept

certs = $dir/certs # Where the issued certs are kept
crl_dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # database index file.
new_certs_dir = $dir/newcerts # default place for new certs.
certificate = $dir/cacert.pem # The CA certificate

serial = $dir/serial # The current serial number

crl = $dir/crl.pem # The current CRL

private_key = $dir/private/cakey.pem # The private key
RANDFILE = $dir/private/.rand # private random number file
x509_extensions = usr_cert # The extentions to add to the cert

Extensions to add to a CRL. Note: Netscape communicator chokes on V2 CRLs
so this is commented out by default to leave a V1 CRL.
crl_extensions = crl_ext

default_days =365 # how long to certify for
default_crl_days= 30 # how long before next CRL
default_ md =shal # which md to use.

preserve =no # keep passed DN ordering

A few difference way of specifying how similar the request should look
For type CA, the listed attributes must be the same, and the optional
and supplied fields are just that :-)

policy = policy_match

For the CA policy
[policy_match]

countryName = match
stateOrProvinceName = optional
localityName = match
organizationName = match
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

For the 'anything' policy

At this point in time, you must list all acceptable 'object'
types.

[policy_anything]

countryName = optional

Chapter 2. Certificate Management

SSL Certificates HOWTO

stateOrProvinceName = optional

localityName = optional
organizationName = optional
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

R R R R R R R R R R R R
[req]

default_bits =1024

default_keyfile = privkey.pem

distinguished_name = req_distinguished_name

attributes = req_attributes

default_md =shal

x509_extensions = v3_ca # The extentions to add to the self signed cert

[req_distinguished_name]

countryName = Country Name (2 letter code)
countryName_default = FJ
countryName_min =2

countryName_max =2

stateOrProvinceName = State or Province Name (full name)
stateOrProvinceName_default = Fiji

localityName = Locality Name (eg, city)
localityName_default = Suva

0.organizationName = Organization Name (eg, company)
0.organizationName_default = SOPAC

we can do this but it is not needed normally :-)
#1.organizationName = Second Organization Name (eg, company)
#1.organizationName_default = World Wide Web Pty Ltd

organizationalUnitName = Organizational Unit Name (eg, section)
organizationalUnitName_default = ITU

commonName = Common Name (eg, YOUR name)
commonName_max = 64
emailAddress = Email Address

emailAddress_max = 40

SET-ex3 = SET extension number 3

[req_attributes]

challengePassword = A challenge password
challengePassword_min = 4

challengePassword_max = 20

unstructuredName = An optional company name

[usr_cert]

These extensions are added when 'ca’ signs a request.

This goes against PKIX guidelines but some CAs do it and some software
requires this to avoid interpreting an end user certificate as a CA.

basicConstraints=CA:FALSE

Here are some examples of the usage of nsCertType. If it is omitted
the certificate can be used for anything *except* object signing.

Chapter 2. Certificate Management

SSL Certificates HOWTO

This is OK for an SSL server.
nsCertType = server

For an object signing certificate this would be used.
nsCertType = objsign

For normal client use this is typical
nsCertType = client, email

and for everything including object signing:
nsCertType = client, email, objsign

This is typical in keyUsage for a client certificate.
keyUsage = nonRepudiation, digitalSignature, keyEncipherment

This will be displayed in Netscape's comment listbox.
nsComment = "Certificate issued by https://www.sopac.org/ss|/"

PKIX recommendations harmless if included in all certificates.
subjectKeyldentifier=hash

authorityKeyldentifier=keyid,issuer:always
This stuff is for subjectAltName and issuerAltname.
Import the email address.

subjectAltName=email:copy

Copy subject details
issuerAltName=issuer:copy

This is the base URL for all others URL addresses

if not supplied

nsBaseUrl = https://www.sopac.org/ssl/

This is the link where to download the latest Certificate

Revocation List (CRL)

nsCaRevocationUrl = https://www.sopac.org/ssl/sopac—ca.crl

This is the link where to revoke the certificate
nsRevocationUrl = https://www.sopac.org/ssl/revocation.htm|?

This is the location where the certificate can be renewed
nsRenewalUrl = https://www.sopac.org/ssl/renewal.htm|?

This is the link where the CA policy can be found
nsCaPolicyUrl = https://www.sopac.org/ssl/policy.html

This is the link where we can get the issuer certificate
issuerAltName = URI:https://www.sopac.org/ssl/sopac.crt

This is the link where to get the latest CRL
criDistributionPoints = URI:https://www.sopac.org/ssl/sopac—ca.crl

[v3_ca]
Extensions for a typical CA
PKIX recommendation.

subjectKeyldentifier=hash

Chapter 2. Certificate Management

SSL Certificates HOWTO

authorityKeyldentifier=keyid:always,issuer:always

This is what PKIX recommends but some broken software chokes on critical
extensions.

basicConstraints = critical, CA:true

So we do this instead.

basicConstraints = CA:true

Key usage: this is typical for a CA certificate. However since it will
prevent it being used as an test self-signed certificate it is best

left out by default.

keyUsage = cRLSign, keyCertSign

Some might want this also
nsCertType = ssICA, emailCA

Include email address in subject alt name: another PKIX recommendation
subjectAltName=email:copy

Copy issuer details

issuerAltName=issuer:copy

RAW DER hex encoding of an extension: beware experts only!
1.2.3.5=RAW.:02:03

You can even override a supported extension:

basicConstraints= critical, RAW:30:03:01:01:FF

This will be displayed in Netscape's comment listbox.
nsComment = "Certificate issued by https://www.sopac.org/ss|/"

This is the base URL for all others URL addresses
if not supplied
nsBaseUrl = https://www.sopac.org/ssl/

This is the link where to download the latest Certificate
Revocation List (CRL)
nsCaRevocationUrl = https://www.sopac.org/ssl/sopac—ca.crl

This is the link where to revoke the certificate
nsRevocationUrl = https://www.sopac.org/ssl/revocation.html?

This is the location where the certificate can be renewed
nsRenewalUrl = https://www.sopac.org/ssl/renewal.htm|?

This is the link where the CA policy can be found
nsCaPolicyUrl = https://www.sopac.org/ssl/policy.html

This is the link where we can get the issuer certificate
issuerAltName = URI:https://www.sopac.org/ssl/sopac.crt

This is the link where to get the latest CRL
criDistributionPoints = URI:https://www.sopac.org/ssl/sopac—ca.crl

[crl_ext]

CRL extensions.

Only issuerAltName and authorityKeyldentifier make any sense in a CRL.
issuerAltName=issuer:copy
authorityKeyldentifier=keyid:always,issuer:always

#-———End--——

Chapter 2. Certificate Management

SSL Certificates HOWTO

A few comments on openssl.cnf.
« Variable names can use the suffixes _default for default value, _min for the minimum number of
characters required and _max for the maximum number of characters required.
 The file is composed of [Sections] of variables.
dir:
Specifies the base directory.
default_ca:
Specifies which section contains the variables for a default certificate.

basicConstraints:

Defines the usage of the certificate, for instance with CA:TRUE, the certificate is a root CA
Certificate.

2.1.3. Create the Certification Authority
To create a certification authority, use the command after correctly editing openssl.cnf:

CA.pl -newca

2.2. Create a Root Certification Authority Certificate.

CA.pl —newcert
(openssl req —config /etc/openssl.cnf —new —x509 —keyout newreq.pem —out newreq.pem —days 365)

creates a self signed certificate (for Certificate Authority). The resulting file goes into newreq.pem. For the
common Name (CN) use something like "ACME root Certificate". This file needs to be split into 2 files
cacert.pem and private/cakey.pem. The part —-RSA PRIVATE KEY- goes into private/cakey.pem while the
part —-CERTIFICATE- goes into cacert.pem. Delete newreq.pem when finished.

Now ensure that the file index.txt is empty and that the file serial contains 1.
You may want to increase the number of days so that your root certificate and all the certificates signed by

this root does not have to be changed when the root certificate expires. | think professional companies work
over 5 years to 10 years for their root certificates.

openssl req —config /etc/openssl.cnf-new —x509 —keyout private/cakey.pem —out cacert.pem —days 3650

This last command is better than "CA.pl —newcert" as it will place the files in the required locations and
create a root CA valid for 10 years.

2.1.3. Create the Certification Authority 10

SSL Certificates HOWTO

Now ensure that this self signed root certificate is used only to sign other certificates. The private key is
highly sensible, never compromise it, by removing the passphrase that protects it. Some people will place tt
private key on a floppy and will load it only when signing other certificates. If you computer gets hacked they
can't physically get hold of the private key, if it is on a floppy.

Now you have a root Certification Authority. Other people need to trust your self-signed root CA Certificate,
and therefore download it and register it on their browser.

You will have to type the passphrase each time you want to sign another certificate with it.

2.3. Create a non root Certification Authority Certificate.

FIXME because I'm not sure about the procedure.

It is possible to use any signed certificate to sign any other certificate, provided that the certificate is valid
and has been issued with the signing capability. So you can create a certificate request and a private key,
make the certificate been signed by a third party and install the signed certificate and private key. The part
-PRIVATE KEY- goes into private/cakey.pem while the part —-CERTIFICATE- goes into cacert.pem.

2.4. Install the CA root certificate as a Trusted Root
Certificate

First strip the certificate from all its text to keep only the —-CERTIFICATE- section

openssl x509 —in cacert.pem —out cacert.crt

Place this file on your web site as http://mysite.com/ssl/cacert.crt. Your web server should have a mime entr
for .crt files. Your certificate is ready to be downloaded by any browser and saved.

It is important to publish the root CA Certificate on a web site as it is unlikely that people will have it already
loaded on their browser. Beware, somebody could fake your web site and fake your root CA Certificate. If
you can have more than one way for users to get your certificate, it is unlikely that a hacker will be able to
corrupt everything.

2.4.1. In Netscape

Download the certificate from the web server or from the file system using Netscape. Netscape automaticall
recognises that it is a root certificate and will propose you to add it in its store. Follow the wizard to install
the certifcate. At the end of the wizard you have to specify for which type of application you trust this
certifcate: web site security, e-mail signing, or code signing.

2.3. Create a non root Certification Authority Certificate. 11

SSL Certificates HOWTO

2.4.2. In Galeon

FIXME

2.4.3. In Opera

FIXME

2.4.4. In Internet Explorer

With your browser, point to the address of the certificate and save the file on your disk. Double click on the
file and the Certificate Installation wizard will start. Because the certificate is self sighed, Internet explorer
will automatically install it in the Trusted root Certificate Authority list. From now on, Internet Explorer
won't complain and any Certificate signed with this root CA Certificate will be trusted too.

You can also open it from Internet explorer which will display the certificate. Click on the button Install
Certificate to launch the Certificate Installation wizard.

2.5. Certificate management

2.5.1. Generate and Sign a certificate request

CA.pl —newreq
(openssl req —config /etc/openssl.cnf —new —keyout newreq.pem —out newreq.pem —days 365)

creates a new private key and a certificate request and place it as newreq.pem. Enter a Common Name (CI
the main usage of the certificate for instance www.sopac.org if you want to secure the website
www.sopac.org, or enter franck@sopac.org if you want to use to secure the e-mails of franck@sopac.org.

CA.pl =sign
(openssl ca —config /etc/openssl.cnf —policy policy_anything —out newcert.pem —infiles newreq.pem)

will sign the request using the cacert.pem and commit the certificate as newcert.pem. You will need to enter
the passphrase of the cacert.pem (your CA Certificate). The file newcerts/xx.pem will be created and
index.txt and serial will be updated.

You private key is in newreqg.pem —PRIVATE KEY- and your certificate is in newcert.pem
-CERTIFICATE-

A copy of newcert.pem is placed in newcerts/ with an adequate entry in index.txt so that a client can reques
this information via a web server to ensure the authenticity of the certificate.

Beware of your newreq.pem file, because it contains a certificate request, but also your private key. The
—-PRIVATE KEY- section is not required when you sign it. So if you request someone else to sign your
certificate request, ensure that you have removed the —PRIVATE KEY- section from the file. If you sign

2.4.2. In Galeon 12

SSL Certificates HOWTO

someone else certificate request, request from this person its ~-CERTIFICATE REQUEST- section not its
private key.

2.5.2. Revoke a certificate

To revoke a certificate simply issue the command:

openssl —revoke newcert.pem

The database is updated and the certificate is marked as revoked. You now need to generate the new revol
list of certificates:

openssl ca —gencrl —config /etc/openssl.cnf —out crl/sopac—ca.crl

This Certificate Revokation List (CRL) file should be made available on your web site.

You may want to add the parameters crldays or crlhours and crlexts when you revoke a certificate. The first
two parameters indicate when the next CRL will be updated and the last one will use the crl_exts section in
openssl.cnf to produce a CRL v2 instead of a CRL v1.

openssl ca —gencrl —config /etc/openssl.cnf —crldays 7 —crlexts crl_ext —out crl/sopac—ca.crl

2.5.3. Renew a certificate

The user sends you its old certificate request or create a new one based on its private key.

First you have to revoke the previous certificate and sign again the certificate request.

To find the old certificate, look in the index.txt file for the Distinguished Name (DN) corresponding to the
request. Get the serial Number <xx>, and use the file cert/<xx>.pem as certificate for the revocation

procedure.

You may want to sign the request manually because you have to ensure that the start date and end date of
validity of the new certificate are correct.

openssl ca —config /etc/openssl.cnf —policy policy_anything —out newcert.pem —infiles newreq.pem —startdate [now] —enddate [prev

replace [now] and [previous enddate+365days] by the correct values.

2.5.4. Display a certificate

You may have a certificate in its coded form, to read the details of the certificate just issue the following
command:

2.5.2. Revoke a certificate 13

SSL Certificates HOWTO

openssl X509 —in newcert.pem —noout —text

2.5.5. The index.txt file

In the index.txt file you can find the various certificate managed by OpenSSL. The entries are maked with R
for Revoked, V for Valid and E for expired.

2.5.6. Build your web based Certificate Authority
There are a few requirements when you are a Certificate Authority (CA):
1. You must publish your root CA Certificate, so that it can be widely installed in applications.
2.You must publish the revocation list.
3. You must display a certificate detail, provided its serial number
4.You must provide a form for users to submit certificate requests.

All these requirements can be done using a web server and some scripting.

FIXME: some code here for the web interface...

2.6. Securing Internet Protocols.

2.6.1. Using a certificate with mod_ssl in apache

First never use your self-signed root CA Certificate with any application and especially with apache as it
requires you to remove the passphrase on your private key.

First generate and sign a certificate request with the Common Name (CN) as www.mysite.com. Remove an
extra information to keep only the ———CERTIFCATE ——- part.

The key needs to be made insecure, so no password is required when reading the private key. Take the
newred.pem files that contains your private key and remove the passphrase from it.

openssl rsa —in newreg.pem —out wwwkeyunsecure.pem

Because the key (PRIVATE Key) is insecure, you must know what you are doing: check file permissions,
etc... If someone gets its hand on it, your site is compromised (you have been warned). Now you can use th
newcert and cakeyunsecure.pem for apache.

Copy wwwkeyunsecure.pem and newcert.pem in the directory /etc/httpd/conf/ssl/ as wwwkeyunsecure.pem
and wwwcert.crt respectively.

Edit /etc/httpd/conf/ssl/ssl.default-vhost.conf.

2.5.5. The index.txt file 14

SSL Certificates HOWTO

Server Certificate:

Point SSLCertificateFile at a PEM encoded certificate. If

the certificate is encrypted, then you will be prompted for a
pass phrase. Note that a kill -HUP will prompt again. A test
certificate can be generated with “‘make certificate' under
built time.

#SSL CertificateFile conf/ssl/ca.crt

SSL CertificateFile wwwecert.crt

Server Private Key:

If the key is not combined with the certificate, use this

directive to point at the key file.

#SSL CertificateKeyFile conf/ssl/ca.key.unsecure

SSL CertificateKeyFile wwwkeyunsecure.pem

Stop and start httpd (/etc/rc.d/init.d/httpd stop) ensure that all processes are dead (killall httpd) and start http
(/fetc/rc.d/init.d/httpd start)

2.6.2. Using a certificate with IMAPS

FIXME

2.6.3. Using a certificate with POPS

FIXME

2.6.4. Using a certificate with Postfix

FIXME

2.6.5. Using a certificate with Stunnel

FIXME

2.6.6. Generate and Sign a key with Microsoft Key Manager

In Microsoft Key Manager, select the service you want to create a key for, for instance IMAP (or WWW).
Use the wizard to generate a new key. Ensure that the distinguished name won't be identical to previous
generated keys, for Instance for the Common Name (CN) use imap.mycompany.com. The wizard will place
the request in the file C:\NewKeyRq.txt. Key Manager shows a Key with a strike to indicate the key is not
signed.

Import this file in the OpenSSL /var/ssl directory, rename it to newreq.pem and sign the request as usual.

2.6.2. Using a certificate with IMAPS 15

SSL Certificates HOWTO

CA.pl =sign
The file newcert.pem is not yet suitable for key manager as it contains some text and the —-CERTIFICATE-
section. We have to remove the text, the easy way is to do:

openssl x509 —in newcert.pem —out newcertx509.pem

Using a text editor is also suitable to delete everything outside the —-CERTIFICATE- section.
The newcertx509.pem file now contains only the —~-CERTIFICATE- section.
Export the file newcertx509.pem to the Computer running key Manager and while selecting the key icon in

the Key Manager application, right click and click on Install the Key Certificate, select this file, enter the
passphrase. The key is now fully functional.

2.7. Securing E—mails.

2.7.1. Generate and use an s/mime certificate
Simply generate and sign a certificate request but with the Common Name (CN) being your e-mail address.

Now sign your message test.txt (output test.msg) using your certificate newcert.pem and your key
newreq.pem:

openssl smime —sign —in test.txt —text —out test.msg —signer newcert.pem —inkey newreq.pem

You can now transmit test. msg to anybody, you can use this procedure to make signed advisories, or other
signed documents to be published digitally.

2.7.2. To use this certificate with MS Outlook

You need to import it in Outlook as a pkcs12 file. To generate the pkcs12 file from your newcert.pem and
newreq.pem:

CA.pl —pkcs12 "Franck Martin"
(openssl pkes12 —export —in newcert.pem —inkey newreq.pem —out newcert.p12 —name "Franck Martin")

Beware this certificate contains your public and private key and is only secured by the passphrase. This is a
file not to let into everybody's hand.

In MS Outlook go to Tools, Options and Security, Click on the import/export button select to import the

newcert.pl2 file, enter the export password and the Digital ID "Franck Martin" (That's my name so use your
name in the above examples). And Click on Ok.

2.7. Securing E-mails. 16

SSL Certificates HOWTO

Now click on the Settings button, MS Outlook should have selected the default setting so just click on New.
And finally click on Ok, except if you want to change the default settings. You are ready to send signed
e—mails. When you send a signed e—mail the user at the other end will receive your public key, and will
therefore be able to send you encrypted e-mails.

As you have issued this certificate from a self-signed certificate (root CA Certificate), the trust path won't be
valid because the application does not know the root CA Certificate. The root CA certificate has to be
downloaded and installed. Refer to the chapter "Install the CA root certificate as a Trusted Root Certificate il
Internet Explorer".

You can send your message as encrypted signed messages or clear text message. The encryption is not re
an encryption as the message contains everything needed to decrypt the message, but it ensures that the
recipient won't read the message if he does not have an s/mime compliant reader.

2.7.3. To use this certificate with MS Outlook Express

FIXME

2.7.4. To use this certificate with Netscape Messenger

FIXME

2.7.5. To use this certificate with Evolution

FIXME

2.7.6. To use this certificate with Balsa

FIXME

2.7.7. To use this certifcate with KMail

FIXME

2.8. Securing Code

2.8.1. Micosoft Code

You can sign your programs and applet to certify that you are the author of such code. It is important for yoL
customes to trust that nobody has tried to insert a virus or a backdoor inside your code. To authenticate you
code you need Microsoft Authenticode SDK. You can get it from the Microsoft web site in the MSDN
section.

2.7.3. To use this certificate with MS Outlook Express 17

SSL Certificates HOWTO

Gernerate a certificate as usual but with a Common Name (CN) like "ACME Software Cert". Have the
certificate signed by the CA and convert it to a pkcs12 format.

CA.pl —newcert
CA.pl =sign
CA.pl —pkcs12 "ACME Software Cert"

You get a file called newcert.p12 that you import in the Certificate store by clicking on the file when in
Windows.

You can now use this certificate for signing your code

signcode —cn "ACME Software cert" —tr 5 —tw 2 —n "My Application" =i http://www.acme.com/myapp/ —t http://timestamp.verisign.co

When you try to install and run your application a dialog will appears with the title "My Application" and
with a link pointed by the —i argument.

2.7.3. To use this certificate with MS Outlook Express 18

	Table of Contents
	Chapter 1. Generalities
	1.1. Introduction
	1.1.1. Disclaimer and Licence
	1.1.2. Prior knowledge

	1.2. What is SSL and what are Certificates?
	1.2.1. Private Key/Public Key:
	1.2.2. The Certificate:
	1.2.3. The Symmetric key:
	1.2.4. Encryption algorithm:
	1.2.5. The Hash:
	1.2.6. Signing:
	1.2.7. PassPhrase:

	1.3. What about S/Mime or other protocols?

	Chapter 2. Certificate Management
	2.1. Installation
	2.1.1. The CA.pl utility
	2.1.2. The openssl.cnf file
	2.1.3. Create the Certification Authority

	2.2. Create a Root Certification Authority Certificate.
	2.3. Create a non root Certification Authority Certificate.
	2.4. Install the CA root certificate as a Trusted Root Certificate
	2.4.1. In Netscape
	2.4.2. In Galeon
	2.4.3. In Opera
	2.4.4. In Internet Explorer

	2.5. Certificate management
	2.5.1. Generate and Sign a certificate request
	2.5.2. Revoke a certificate
	2.5.3. Renew a certificate
	2.5.4. Display a certificate
	2.5.5. The index.txt file
	2.5.6. Build your web based Certificate Authority

	2.6. Securing Internet Protocols.
	2.6.1. Using a certificate with mod_ssl in apache
	2.6.2. Using a certificate with IMAPS
	2.6.3. Using a certificate with POPS
	2.6.4. Using a certificate with Postfix
	2.6.5. Using a certificate with Stunnel
	2.6.6. Generate and Sign a key with Microsoft Key Manager

	2.7. Securing E-mails.
	2.7.1. Generate and use an s/mime certificate
	2.7.2. To use this certificate with MS Outlook
	2.7.3. To use this certificate with MS Outlook Express
	2.7.4. To use this certificate with Netscape Messenger
	2.7.5. To use this certificate with Evolution
	2.7.6. To use this certificate with Balsa
	2.7.7. To use this certifcate with KMail

	2.8. Securing Code
	2.8.1. Micosoft Code

